Vasquez Pamela, Diaz Ayline, Marquez-Cortes Rodrigo, Martínez Ronny, Bernal Claudia
Laboratorio de Catálisis y Biocatálisis, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile.
Tecnología de Enzimas para Bioprocesos, Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile.
Bioresour Technol. 2025 Dec;438:133221. doi: 10.1016/j.biortech.2025.133221. Epub 2025 Aug 26.
The conversion of renewable biomass into value-added dicarboxylic acids, such as galactaric and glucaric acids, remains a significant challenge for the sustainable chemical industry, largely due to the lack of efficient and selective enzymatic processes. In this study, we employed protein engineering strategies to modify glucose oxidase (GOx) from Aspergillus niger, aiming to enhance its substrate specificity and broaden its oxidative capacity for the production of dicarboxylic acids. Site-saturation mutagenesis libraries targeting position F414 of the GOx-Y68W variant were constructed and screened. This effort led to the identification of four active variants with markedly enhanced oxidative performance. Among them, the Y68W + F414P variant demonstrated the highest efficiency and selectivity for glucose oxidation at C1, achieving glucuronic acid yields of 40 % under mild conditions (40 °C, pH 6.0). Notably, the Y68W + F414C variant exhibited dual oxidation activity at both the C1 and C6 positions of glucose, enabling a one-pot biocatalytic route to glucaric acid with a 15 % yield. This study represents the first report of glucose oxidase variants capable of driving sequential oxidation toward glucaric acid in a single enzymatic system. These findings advance the application of protein engineering in tailoring classical oxidases for complex, multi-step biotransformations, offering new opportunities for the sustainable production of dicarboxylic acids from renewable feedstocks.
将可再生生物质转化为增值二羧酸,如半乳糖二酸和葡萄糖二酸,对可持续化学工业来说仍然是一项重大挑战,这主要是由于缺乏高效且具选择性的酶促过程。在本研究中,我们采用蛋白质工程策略对黑曲霉的葡萄糖氧化酶(GOx)进行修饰,旨在增强其底物特异性并拓宽其用于生产二羧酸的氧化能力。构建并筛选了针对GOx - Y68W变体F414位点的位点饱和诱变文库。这项工作导致鉴定出四个氧化性能显著增强的活性变体。其中,Y68W + F414P变体在C1位对葡萄糖氧化表现出最高的效率和选择性,在温和条件(40°C,pH 6.0)下葡萄糖醛酸产率达到40%。值得注意的是,Y68W + F414C变体在葡萄糖的C1和C6位均表现出双重氧化活性,从而实现了一条一锅法生物催化合成葡萄糖二酸的路线,产率为15%。本研究是关于能够在单一酶系统中驱动向葡萄糖二酸进行顺序氧化的葡萄糖氧化酶变体的首次报道。这些发现推动了蛋白质工程在定制经典氧化酶用于复杂多步生物转化方面的应用,为从可再生原料可持续生产二羧酸提供了新机遇。