Suppr超能文献

数字化乳腺摄影中的纹理特征标准化,以提高跨设备的通用性。

Texture feature standardization in digital mammography for improving generalizability across devices.

作者信息

Wang Yan, Keller Brad M, Zheng Yuanjie, Acciavatti Raymond J, Gee James C, Maidment Andrew D A, Kontos Despina

机构信息

Department of Radiology, Perelman School of Medicine at the University of Pennsylvania. 3600 Market St. Suite 370, Philadelphia, PA, USA, 19104.

出版信息

Proc SPIE Int Soc Opt Eng. 2013 Feb;8670. doi: 10.1117/12.2008149. Epub 2013 Feb 28.

Abstract

Growing evidence suggests a relationship between mammographic texture and breast cancer risk. For studies performing texture analysis on digital mammography (DM) images from various DM systems, it is important to evaluate if different systems could introduce inherent differences in the images analyzed and how to construct a methodological framework to identify and standardize such effects, if these differences exist. In this study, we compared two DM systems, the GE Senographe 2000D and DS using a validated physical breast phantom (Rachel, Gammex). The GE 2000D and DS systems use the same detector, but a different automated exposure control (AEC) system, resulting in differences in dose performance. On each system, images of the phantom are acquired five times in the Cranio-Caudal (CC) view with the same clinically optimized phototimer setting. Three classes of texture features, namely grey-level histogram, co- occurrence, and run-length texture features (a total of 26 features), are generated within the breast region from the raw DM images and compared between the two imaging systems. To alleviate system effects, a range of standardization steps are applied to the feature extraction process: z-score normalization is performed as the initial step to standardize image intensities, and the parameters in generating co-occurrence features are varied to decrease system differences introduced by detector blurring effects. To identify texture features robust to detectors (i.e. the ones minimally affected only by electronic noise), the distribution of each texture feature is compared between the two systems using the Kolmogorov-Smirnov (K-S) test at 0.05 significance, where features with p>0.05 are deemed robust to inherent system differences. Our approach could provide a basis for texture feature standardization across different DM imaging systems and provide a systematic methodology for selecting generalizable texture descriptors in breast cancer risk assessment.

摘要

越来越多的证据表明乳腺X线纹理与乳腺癌风险之间存在关联。对于在来自各种数字乳腺摄影(DM)系统的DM图像上进行纹理分析的研究而言,评估不同系统是否会在分析的图像中引入固有差异,以及如果存在这些差异,如何构建一个方法框架来识别和标准化此类影响,是很重要的。在本研究中,我们使用经过验证的物理乳房模型(瑞秋,Gammex)比较了两种DM系统,即GE Senographe 2000D和DS。GE 2000D和DS系统使用相同的探测器,但自动曝光控制(AEC)系统不同,导致剂量性能存在差异。在每个系统上,使用相同的临床优化光电定时器设置,在头尾位(CC)视图中对模型图像进行五次采集。从原始DM图像中在乳房区域内生成三类纹理特征,即灰度直方图、共生矩阵和游程长度纹理特征(总共26个特征),并在两种成像系统之间进行比较。为了减轻系统影响,在特征提取过程中应用了一系列标准化步骤:作为标准化图像强度的第一步进行z分数归一化,并且改变生成共生矩阵特征时的参数以减少探测器模糊效应引入的系统差异。为了识别对探测器具有鲁棒性的纹理特征(即仅受电子噪声影响最小的特征),使用Kolmogorov-Smirnov(K-S)检验在0.05显著性水平下比较两个系统之间每个纹理特征的分布,其中p>0.05的特征被认为对固有系统差异具有鲁棒性。我们的方法可以为跨不同DM成像系统的纹理特征标准化提供基础,并为在乳腺癌风险评估中选择可推广的纹理描述符提供系统方法。

相似文献

本文引用的文献

2
Texture features from mammographic images and risk of breast cancer.乳腺X线图像的纹理特征与乳腺癌风险
Cancer Epidemiol Biomarkers Prev. 2009 Mar;18(3):837-45. doi: 10.1158/1055-9965.EPI-08-0631. Epub 2009 Mar 3.
9
Development of an anthropomorphic breast phantom.拟人化乳房模型的研制。
Med Phys. 1990 Mar-Apr;17(2):273-80. doi: 10.1118/1.596506.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验