Shukla Vidushi, Bilderback Willis T, Fernandes Deisy, Daley Mark, Basnet Rojry, Joshi Pushkaraj, Yang Zidan, Tripathi Anubhav, Rosenstein Jacob K, Coulombe Kareen, Hurt Robert H
School of Engineering, Brown University Providence Rhode Island USA
Department of Chemistry, Brown University Providence Rhode Island USA.
Nanoscale Adv. 2025 Aug 21. doi: 10.1039/d5na00377f.
Electrically conductive hydrogels are of interest as scaffolds for tissue engineering applications involving the growth, implantation, or attachment of electrically active cells. Such hydrogels should exhibit soft mechanics, tunable conductivity to match native tissue, biocompatibility, and biodegradability into non-toxic, clearable species. Common conductors based on metals or polymers can be challenged by insufficient biocompatibility or biodegradability. A potential new alternative is the use of composites containing 1T-phase MoS nanosheet fillers, which have a metallic nature and undergo oxidative biodegradation over clinically useful time scales. Chemically exfoliated MoS is introduced into assembly protocols for fibrin hydrogels and the composites characterized by electrochemical impedance spectroscopy, which reveals a 400% increase in conductivity in the physiologically important mid-band region of 10-10 hertz. studies on fibrin/MoS composite hydrogels show complex multipath biodegradation behaviors. Matrix metalloprotease action degrades fibrin to soluble protein, without attacking the nanosheets. The nanosheets degrade separately by HO oxidation to soluble molybdate in a self-limiting reaction inhibited by the catalysis of peroxide decomposition by the molybdate product. Genipin cross-linking is demonstrated as a method to stabilize the fibrin network, control the overall hydrogel monolith lifetime, and control the biodegradation pathway to avoid nanosheet release by early loss of the fibrin network. The composite degradation products were found to be non-cytotoxic to primary cardiac fibroblasts by the MTT assay. Overall, 1T-phase MoS nanosheets offer an attractive alternative to currently available inorganic or polymeric additives for creating conductive, bioresorbable, and biocompatible hydrogels.
导电水凝胶作为组织工程应用的支架具有重要意义,这些应用涉及电活性细胞的生长、植入或附着。此类水凝胶应具备柔软的力学性能、可调节的导电性以匹配天然组织、生物相容性以及可生物降解为无毒、可清除物质的特性。基于金属或聚合物的常见导体可能因生物相容性或生物降解性不足而面临挑战。一种潜在的新替代方案是使用含有1T相MoS纳米片填料的复合材料,该材料具有金属性质,并在临床上有用的时间尺度上发生氧化生物降解。将化学剥离的MoS引入纤维蛋白水凝胶的组装方案中,并通过电化学阻抗谱对复合材料进行表征,结果显示在生理重要的10 - 10赫兹中频段区域,导电性提高了400%。对纤维蛋白/MoS复合水凝胶的研究表明其具有复杂的多途径生物降解行为。基质金属蛋白酶作用会将纤维蛋白降解为可溶性蛋白质,而不会攻击纳米片。纳米片通过HO氧化单独降解为可溶性钼酸盐,这是一个自限性反应,受到钼酸盐产物对过氧化物分解的催化作用抑制。已证明京尼平交联是一种稳定纤维蛋白网络、控制整体水凝胶整体寿命以及控制生物降解途径以避免因纤维蛋白网络早期损失而导致纳米片释放的方法。通过MTT试验发现复合降解产物对原代心脏成纤维细胞无细胞毒性。总体而言,1T相MoS纳米片为目前用于制造导电、生物可吸收和生物相容性水凝胶的无机或聚合物添加剂提供了有吸引力的替代方案。