Huang Wenzhun, Wang Xiao, Chen Yunhao, Yu Changqing, Zhang Shanwen
School of Electronic Information, Xijing University, Xi'an, Shaanxi, China.
Key Laboratory of High Precision Industrial Intelligent Vision Measurement Technology, Xi'an, Shaanxi, China.
Front Pharmacol. 2025 Aug 13;16:1618701. doi: 10.3389/fphar.2025.1618701. eCollection 2025.
Drug-drug interactions (DDIs) pose a significant and intricate challenge in clinical pharmacotherapy, especially among older adults who often have chronic conditions that necessitate multiple medications. These interactions can undermine the effectiveness of treatments or lead to adverse drug reactions (ADRs), which in turn can increase illness rates and strain healthcare resources. Traditional methods for detecting DDIs, such as clinical trials and spontaneous reporting systems, tend to be retrospective and frequently fall short in identifying rare, population-specific, or complex DDIs. However, recent advancements in artificial intelligence (AI), systems pharmacology, and real-world data analytics have paved the way for more proactive and integrated strategies for predicting DDIs. Innovative techniques like graph neural networks (GNNs), natural language processing, and knowledge graph modeling are being increasingly utilized in clinical decision support systems (CDSS) to improve the detection, interpretation, and prevention of DDIs across various patient demographics. This review aims to provide a thorough overview of the latest trends and future directions in DDIs research, structured around five main areas: (1) epidemiological trends and high-risk drug combinations, (2) mechanistic classification of DDIs, (3) methodologies for detection and prediction, particularly those driven by AI, (4) considerations for vulnerable populations, and (5) regulatory frameworks and pathways for innovation. Special emphasis is placed on the role of pharmacogenomic insights and real-world evidence in developing personalized strategies for assessing DDIs risks. By connecting fundamental pharmacological principles with advanced computational technologies, this review seeks to guide clinicians, researchers, and regulatory bodies. The integration of AI, multi-omics data, and digital health systems has the potential to significantly enhance the safety, accuracy, and scalability of DDIs management in contemporary healthcare.
药物相互作用(DDIs)在临床药物治疗中构成了重大且复杂的挑战,尤其是在经常患有需要多种药物治疗的慢性病的老年人中。这些相互作用可能会削弱治疗效果或导致药物不良反应(ADRs),进而增加发病率并给医疗资源带来压力。传统的检测药物相互作用的方法,如临床试验和自发报告系统,往往是回顾性的,并且在识别罕见的、特定人群的或复杂的药物相互作用方面常常不足。然而,人工智能(AI)、系统药理学和真实世界数据分析的最新进展为预测药物相互作用的更主动和综合的策略铺平了道路。诸如图神经网络(GNNs)、自然语言处理和知识图谱建模等创新技术正越来越多地应用于临床决策支持系统(CDSS),以改善对不同患者群体药物相互作用的检测、解释和预防。本综述旨在全面概述药物相互作用研究的最新趋势和未来方向,围绕五个主要领域展开:(1)流行病学趋势和高风险药物组合,(2)药物相互作用的机制分类,(3)检测和预测方法,特别是由人工智能驱动的方法,(4)对弱势群体的考虑,以及(5)监管框架和创新途径。特别强调了药物基因组学见解和真实世界证据在制定个性化药物相互作用风险评估策略中的作用。通过将基本的药理学原理与先进的计算技术相结合,本综述旨在为临床医生、研究人员和监管机构提供指导。人工智能、多组学数据和数字健康系统的整合有可能显著提高当代医疗保健中药物相互作用管理的安全性、准确性和可扩展性。