Suppr超能文献

HDN-DDI:一种使用分层分子图和增强双视图表示学习预测药物相互作用的新框架。

HDN-DDI: a novel framework for predicting drug-drug interactions using hierarchical molecular graphs and enhanced dual-view representation learning.

作者信息

Sun Jinchen, Zheng Haoran

机构信息

School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.

Anhui Key Laboratory of Software Engineering in Computing and Communication, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.

出版信息

BMC Bioinformatics. 2025 Jan 25;26(1):28. doi: 10.1186/s12859-025-06052-0.

Abstract

BACKGROUND

Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

RESULTS

This study introduces a novel framework for DDI prediction termed HDN-DDI. HDN-DDI integrates an explainable substructure extraction module to decompose drug molecules and represents them using innovative hierarchical molecular graphs, which effectively incorporates information from real chemical substructures and improves molecules encoding efficiency. Furthermore, the enhanced dual-view learning method inspired by the underlying mechanisms of DDIs enables HDN-DDI to comprehensively capture both hierarchical structure and interaction information. Experimental results demonstrate that HDN-DDI has achieved state-of-the-art performance with accuracies of 97.90% and 99.38% on the two widely-used datasets in the warm-start setting. Moreover, HDN-DDI exhibits substantial improvements in the cold-start setting with boosts of 4.96% in accuracy and 7.08% in F1 score on previously unseen drugs. Real-world applications further highlight HDN-DDI's robust generalization capabilities towards newly approved drugs.

CONCLUSION

With its accurate predictions and robust generalization across different settings, HDN-DDI shows promise for enhancing drug safety and efficacy. Future research will focus on refining decomposition rules as well as integrating external knowledge while preserving the model's generalization capabilities.

摘要

背景

药物相互作用(DDIs),尤其是拮抗作用的药物相互作用,对患者安全构成重大风险,这凸显了对可靠预测方法的迫切需求。最近,基于子结构的药物相互作用预测由于官能团和子结构对药物性质的主导影响而备受关注。然而,现有方法在已识别子结构的可解释性不足以及化学子结构的孤立性方面面临挑战。

结果

本研究引入了一种用于药物相互作用预测的新型框架,称为HDN-DDI。HDN-DDI集成了一个可解释的子结构提取模块来分解药物分子,并使用创新的分层分子图来表示它们,这有效地整合了来自真实化学子结构的信息并提高了分子编码效率。此外,受药物相互作用潜在机制启发的增强双视图学习方法使HDN-DDI能够全面捕捉分层结构和相互作用信息。实验结果表明,在热启动设置下,HDN-DDI在两个广泛使用的数据集上分别达到了97.90%和99.38%的准确率,取得了领先的性能。此外,在冷启动设置下,HDN-DDI在预测之前未见过的药物时,准确率提高了4.96%,F1分数提高了7.08%,表现出显著的提升。实际应用进一步突出了HDN-DDI对新批准药物的强大泛化能力。

结论

凭借其准确的预测和在不同设置下的强大泛化能力,HDN-DDI有望提高药物安全性和疗效。未来的研究将集中在完善分解规则以及整合外部知识,同时保持模型的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f57/11765940/4b8aaa21f367/12859_2025_6052_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验