Suppr超能文献

GhostConv+CA-YOLOv8n:一种基于现实复杂背景下低级特征聚合的水稻害虫检测轻量级网络。

GhostConv+CA-YOLOv8n: a lightweight network for rice pest detection based on the aggregation of low-level features in real-world complex backgrounds.

作者信息

Li Fei, Lu Yang, Ma Qiang, Yin Shuxin, Zhao Rui

机构信息

College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing, China.

出版信息

Front Plant Sci. 2025 Aug 13;16:1620339. doi: 10.3389/fpls.2025.1620339. eCollection 2025.

Abstract

Deep learning models for rice pest detection often face performance degradation in real-world field environments due to complex backgrounds and limited computational resources. Existing approaches suffer from two critical limitations: (1) inadequate feature representation under occlusion and scale variations, and (2) excessive computational costs for edge deployment. To overcome these limitations, this paper introduces GhostConv+CA-YOLOv8n, a lightweight object detection framework was proposed, which incorporates several innovative features: GhostConv replaces standard convolutional operations with computationally efficient ghost modules in the YOLOv8n's backbone structure, reducing parameters by 40,458 while maintaining feature richness; a Context Aggregation (CA) module is applied after the large and medium-sized feature maps were output by the YOLOv8n's neck structure. This module enhance low-level feature representation by fusing global and local context, which is particularly effective for detecting occluded pests in complex environments; Shape-IoU, which improves bounding box regression by accounting for target morphology, and Slide Loss, which addresses class imbalance by dynamically adjusting sample weighting during training were employed. Comprehensive evaluations on the Ricepest15 dataset, GhostConv+CA-YOLOv8n achieves 89.959% precision and 82.258% recall with improvements of 3.657% and 11.59%, and the model parameter reduced 1.34%, over the YOLOv8n baseline while maintaining a high mAP (94.527% vs. 84.994% baseline). Furthermore, the model shows strong generalization, achieving a 4.49%, 5.452%, and 3.407% improvement in F1-score, precision, and recall on the IP102 benchmark. This study bridges the gap between accuracy and efficiency for in field pest detection, providing a practical solution for real-time rice monitoring in smart agriculture systems.

摘要

用于水稻害虫检测的深度学习模型在实际田间环境中,由于背景复杂和计算资源有限,常常面临性能下降的问题。现有方法存在两个关键局限:(1)在遮挡和尺度变化情况下特征表示不足;(2)边缘部署的计算成本过高。为克服这些局限,本文引入了GhostConv+CA-YOLOv8n,提出了一种轻量级目标检测框架,它包含几个创新特性:GhostConv在YOLOv8n的骨干结构中用计算效率高的Ghost模块取代标准卷积操作,在保持特征丰富性的同时减少了40458个参数;在YOLOv8n的颈部结构输出大中型特征图后应用上下文聚合(CA)模块。该模块通过融合全局和局部上下文增强低级特征表示,这对于在复杂环境中检测被遮挡的害虫特别有效;采用了Shape-IoU(通过考虑目标形态改进边界框回归)和滑动损失(通过在训练期间动态调整样本权重解决类别不平衡问题)。在Ricepest15数据集上的综合评估中,GhostConv+CA-YOLOv8n的精度达到89.959%,召回率达到82.258%,与YOLOv8n基线相比分别提高了3.657%和11.59%,模型参数减少了1.34%,同时保持了较高的平均精度均值(94.527%对基线的84.994%)。此外,该模型显示出很强的泛化能力,在IP102基准测试中F1分数、精度和召回率分别提高了4.49%、5.452%和3.407%。本研究弥合了田间害虫检测中准确性和效率之间的差距,为智能农业系统中的实时水稻监测提供了切实可行的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0a6/12382391/98c45dd0b167/fpls-16-1620339-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验