Lacy Kiara L, Lim Sujeung, Lundqvist Emil M, Kuang Yuyao, Jeong Harrison C, Adams Tayloria N G, Ardoña Herdeline Ann M
Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, United States.
Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, United States.
ChemSystemsChem. 2025 May;7(3). doi: 10.1002/syst.202400061. Epub 2024 Oct 9.
This work investigates the influence of dielectrophoretic forces on the structural features and the resulting aggregates of a chromogenic model system, peptide-diacetylene (DGV-DA) amphiphiles. Here, we systematically investigate how non-uniform electric fields impact the (i) peptide-directed supramolecular assembly stage and (ii) topochemical photopolymerization stage of polydiacetylenes (PDAs) in a quadrupole-based dielectrophoresis (DEP) device, as well as the (iii) manipulation of DGV-DA aggregates in a light-induced DEP (LiDEP) platform. The conformation-dependent chromatic phases of peptide-PDAs are utilized to probe the chain-level effect of DEP exposure after the supramolecular assembly or after the topochemical photopolymerization stage. Steady-state spectroscopic and microscopy analyses show that structural features such as the chirality and morphologies of peptidic 1-D nanostructures are mostly conserved upon DEP exposure, but applying mild, non-uniform fields at the self-assembly stage is sufficient for fine-tuning the chromatic phase ratio in peptide-PDAs and manipulating their aggregates via LiDEP. Overall, this work provides insights into how non-uniform electric fields offer a controllable approach to fine-tune or preserve the molecularly preset assembly order of DEP-responsive supramolecular or biopolymeric assemblies, as well as manipulate their aggregates using light projections, which have future implications for the precision fabrication of macromolecular systems with hierarchical structure-dependent function.
本研究探讨了介电泳力对发色模型系统——肽-二乙炔(DGV-DA)两亲物的结构特征及由此形成的聚集体的影响。在此,我们系统地研究了非均匀电场如何影响基于四极的介电泳(DEP)装置中聚二乙炔(PDA)的(i)肽导向超分子组装阶段和(ii)拓扑化学光聚合阶段,以及光诱导介电泳(LiDEP)平台中DGV-DA聚集体的(iii)操控。肽-PDA的构象依赖性色相被用于探测超分子组装或拓扑化学光聚合阶段后DEP暴露的链级效应。稳态光谱和显微镜分析表明,肽类一维纳米结构的手性和形态等结构特征在DEP暴露后大多得以保留,但在自组装阶段施加温和的非均匀电场足以微调肽-PDA中的色相比,并通过LiDEP操控其聚集体。总体而言,本研究深入了解了非均匀电场如何提供一种可控方法来微调或保留DEP响应性超分子或生物聚合物组装体的分子预设组装顺序,以及利用光投射操控其聚集体,这对具有层次结构依赖功能的大分子系统的精确制造具有未来意义。