Kuang Yuyao, Yao Ze-Fan, Lim Sujeung, Ngo Catherine, Rocha Megan Alma, Fishman Dmitry A, Ardoña Herdeline Ann M
Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States.
Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States.
Macromolecules. 2023 Jun 15;56(12):4526-4540. doi: 10.1021/acs.macromol.3c00403. eCollection 2023 Jun 27.
Precision control via molecular structure over adaptive conjugated polymer properties in aqueous environments is critical for realizing their biomedical applications. Here, we unravel the dependence of amphiphilic peptide-polydiacetylene (PDA) conjugate properties on the characteristic steric and hydrophobic contributions within peptide segments that serve as a biomimetic template for diacetylene polymerization in water. We investigated the functional impacts of molecular volume and polarity changes brought by dipeptide substitution domains on the following peptide-PDA material properties at multiple length scales: supramolecular assembly behavior, chain conformation-dependent photophysical properties, cell-material interfacing, and for the first time, bulk electrical properties of their films processed in water. A library of peptide-PDAs with systematically varied sequences show that the contributions of steric effects predominantly influence the electronic structure and resulting trends in photophysical properties, while the interplay between size and hydrophobicity of individual residues becomes more significant for higher-order assemblies affecting bulk properties. This work demonstrates sequence-tunable molecular volume and polarity as synthetic handles to rationally modulate PDA material properties across length scales, providing insights into the programmability of biomimetic conjugated polymers with adaptive functionalities.
在水性环境中通过分子结构精确控制适应性共轭聚合物的性质对于实现其生物医学应用至关重要。在此,我们揭示了两亲性肽 - 聚二乙炔(PDA)共轭物的性质对肽段内特征空间和疏水作用的依赖性,这些肽段作为水中二乙炔聚合的仿生模板。我们研究了二肽取代域带来的分子体积和极性变化对以下多个长度尺度的肽 - PDA材料性质的功能影响:超分子组装行为、链构象依赖性光物理性质、细胞 - 材料界面,并且首次研究了在水中加工的其薄膜的体电性质。一系列具有系统变化序列的肽 - PDA表明,空间效应的贡献主要影响电子结构和由此产生的光物理性质趋势,而单个残基的大小和疏水性之间的相互作用对于影响体性质的高阶组装变得更加显著。这项工作证明了序列可调的分子体积和极性作为合理调节跨长度尺度的PDA材料性质的合成手段,为具有适应性功能的仿生共轭聚合物的可编程性提供了见解。