Fender Shannon S, Schnitzer Noah, Fang Wuzhang, Bhatt Lopa, Huang Dingbin, Malik Amani, Gonzalez Oscar, Sunko Veronika, Xie Lilia S, Muller David A, Orenstein Joseph, Ping Yuan, Goodge Berit H, Bediako D Kwabena
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Department of Materials Science, Cornell University, Ithaca, New York 14853, United States.
J Am Chem Soc. 2025 Sep 10;147(36):32315-32320. doi: 10.1021/jacs.5c07385. Epub 2025 Aug 29.
The interplay between symmetry and topology in magnetic materials makes it possible to engineer exotic phases and technologically useful properties. A key requirement for these pursuits is achieving control over local crystallographic and magnetic structure, usually through sample morphology (such as synthesis of bulk crystals versus thin films) and application of magnetic or electric fields. Here we show that VNbS can be crystallized in two ordered superlattices, distinguished by the periodicity of out-of-plane magnetic intercalants. Whereas one of these structures is metallic and displays the hallmarks of altermagnetism, the other superlattice, which has not been isolated before in this family of intercalation compounds, is a semimetallic noncollinear antiferromagnet that may enable access to topologically nontrivial properties. This observation of an unconventional superlattice structure establishes a powerful route for tailoring the tremendous array of magnetic and electronic behaviors hosted in related materials and may expand their use in low-power spintronic or topological quantum devices.
磁性材料中对称性与拓扑结构之间的相互作用使得设计奇异相和具有技术应用价值的特性成为可能。实现这些目标的一个关键要求是通常通过样品形态(例如体晶体与薄膜的合成)以及施加磁场或电场来实现对局部晶体结构和磁结构的控制。在此,我们展示了VNbS可以结晶形成两种有序超晶格,其区别在于面外磁性插层剂的周期性。其中一种结构是金属性的,并展现出交替磁性的特征,而另一种超晶格(此前在这类插层化合物家族中尚未被分离出来)是一种半金属非共线反铁磁体,可能有助于获得拓扑非平凡特性。这种对非常规超晶格结构的观察为定制相关材料中丰富多样的磁性和电子行为建立了一条有力途径,并可能扩大它们在低功耗自旋电子器件或拓扑量子器件中的应用。