Taniguchi Mari, Haku Satoshi, Lee Hyun-Woo, Ando Kazuya
Department of Applied Physics and Physico-Informatics, Keio University, Yokohama, Japan.
Department of Physics, Pohang University of Science and Technology, Pohang, Korea.
Nat Commun. 2025 Aug 29;16(1):8038. doi: 10.1038/s41467-025-62703-z.
In solids, the crystal field couples the electronic orbital degree of freedom to the lattice. This coupling suggests that an excitation of lattice dynamics could trigger the dynamics of orbital angular momentum of electrons, thereby generating orbital currents-a flow of electronic orbital angular momentum. However, the interplay between orbital currents and lattice dynamics has been elusive. Here, we report the observation of the acoustic orbital Hall effect, demonstrating the generation of orbital currents by lattice dynamics. By investigating the acoustoelectric properties of Ti/Ni bilayers induced by surface acoustic waves (SAWs), we demonstrate the generation of an orbital current polarized transverse to the SAW propagation direction. This phenomenon is reminiscent of the electric orbital Hall effect, which generates an orbital current polarized transverse to an applied electric field. We also show that acoustically driven ferromagnetic resonance generates an orbital current in the Ti/Ni bilayer, demonstrating acoustic orbital pumping. These findings highlight the potential of lattice dynamics in generating orbital currents, paving the way for exploring acoustic orbitronics.
在固体中,晶体场将电子轨道自由度与晶格耦合。这种耦合表明,晶格动力学的激发可以触发电子轨道角动量的动力学,从而产生轨道电流——电子轨道角动量的流动。然而,轨道电流与晶格动力学之间的相互作用一直难以捉摸。在这里,我们报告了对声学轨道霍尔效应的观测,证明了晶格动力学可产生轨道电流。通过研究表面声波(SAW)诱导的Ti/Ni双层膜的声电特性,我们证明了产生了一个垂直于SAW传播方向极化的轨道电流。这种现象让人联想到电轨道霍尔效应,它产生一个垂直于外加电场极化的轨道电流。我们还表明,声学驱动的铁磁共振在Ti/Ni双层膜中产生轨道电流,证明了声学轨道泵浦。这些发现突出了晶格动力学在产生轨道电流方面的潜力,为探索声学轨道电子学铺平了道路。