Davidson Angie, Amin Vivek P, Aljuaid Wafa S, Haney Paul M, Fan Xin
Department of Physics and Astronomy, University of Denver, Denver, CO 80210, USA.
Maryland Nanocenter, University of Maryland, College Park, MD 20742, USA.
Phys Lett A. 2020 Apr;384(11). doi: 10.1016/j.physleta.2019.126228.
Spin-orbit coupling enables charge currents to give rise to spin currents and vice versa, which has applications in non-volatile magnetic memories, miniature microwave oscillators, thermoelectric converters and Terahertz devices. In the past two decades, a considerable amount of research has focused on electrical spin current generation in different types of nonmagnetic materials. However, electrical spin current generation in ferromagnetic materials has only recently been actively investigated. Due to the additional symmetry breaking by the magnetization, ferromagnetic materials generate spin currents with different orientations of spin direction from those observed in nonmagnetic materials. Studies centered on ferromagnets where spin-orbit coupling plays an important role in transport open new possibilities to generate and detect spin currents. We summarize recent developments on this subject and discuss unanswered questions in this emerging field.
自旋轨道耦合使电荷电流能够产生自旋电流,反之亦然,这在非易失性磁存储器、微型微波振荡器、热电转换器和太赫兹器件中都有应用。在过去二十年中,大量研究集中在不同类型非磁性材料中的电自旋电流产生。然而,铁磁材料中的电自旋电流产生直到最近才受到积极研究。由于磁化导致的额外对称性破缺,铁磁材料产生的自旋电流的自旋方向取向与在非磁性材料中观察到的不同。以自旋轨道耦合在输运中起重要作用的铁磁体为中心的研究为产生和检测自旋电流开辟了新的可能性。我们总结了该主题的最新进展,并讨论了这个新兴领域中尚未解决的问题。