Suppr超能文献

使用静息态功能磁共振成像数据识别神经发育障碍中的可复制亚组。

Identifying Replicable Subgroups in Neurodevelopmental Conditions Using Resting-State Functional Magnetic Resonance Imaging Data.

机构信息

Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.

Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

出版信息

JAMA Netw Open. 2023 Mar 1;6(3):e232066. doi: 10.1001/jamanetworkopen.2023.2066.

Abstract

IMPORTANCE

Neurodevelopmental conditions, such as autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), have highly heterogeneous and overlapping phenotypes and neurobiology. Data-driven approaches are beginning to identify homogeneous transdiagnostic subgroups of children; however, findings have yet to be replicated in independently collected data sets, a necessity for translation into clinical settings.

OBJECTIVE

To identify subgroups of children with and without neurodevelopmental conditions with shared functional brain characteristics using data from 2 large, independent data sets.

DESIGN, SETTING, AND PARTICIPANTS: This case-control study used data from the Province of Ontario Neurodevelopmental (POND) network (study recruitment began June 2012 and is ongoing; data were extracted April 2021) and the Healthy Brain Network (HBN; study recruitment began May 2015 and is ongoing; data were extracted November 2020). POND and HBN data are collected from institutions across Ontario and New York, respectively. Participants who had diagnoses of ASD, ADHD, and OCD or were typically developing (TD); were aged between 5 and 19 years; and successfully completed the resting-state and anatomical neuroimaging protocol were included in the current study.

MAIN OUTCOMES AND MEASURES

The analyses consisted of a data-driven clustering procedure on measures derived from each participant's resting-state functional connectome, performed independently on each data set. Differences between each pair of leaves in the resulting clustering decision trees in the demographic and clinical characteristics were tested.

RESULTS

Overall, 551 children and adolescents were included from each data set. POND included 164 participants with ADHD; 217 with ASD; 60 with OCD; and 110 with TD (median [IQR] age, 11.87 [9.51-14.76] years; 393 [71.2%] male participants; 20 [3.6%] Black, 28 [5.1%] Latino, and 299 [54.2%] White participants) and HBN included 374 participants with ADHD; 66 with ASD; 11 with OCD; and 100 with TD (median [IQR] age, 11.50 [9.22-14.20] years; 390 [70.8%] male participants; 82 [14.9%] Black, 57 [10.3%] Hispanic, and 257 [46.6%] White participants). In both data sets, subgroups with similar biology that differed significantly in intelligence as well as hyperactivity and impulsivity problems were identified, yet these groups showed no consistent alignment with current diagnostic categories. For example, there was a significant difference in Strengths and Weaknesses ADHD Symptoms and Normal Behavior Hyperactivity/Impulsivity subscale (SWAN-HI) between 2 subgroups in the POND data (C and D), with subgroup D having increased hyperactivity and impulsivity traits compared with subgroup C (median [IQR], 2.50 [0.00-7.00] vs 1.00 [0.00-5.00]; U = 1.19 × 104; P = .01; η2 = 0.02). A significant difference in SWAN-HI scores between subgroups g and d in the HBN data was also observed (median [IQR], 1.00 [0.00-4.00] vs 0.00 [0.00-2.00]; corrected P = .02). There were no differences in the proportion of each diagnosis between the subgroups in either data set.

CONCLUSIONS AND RELEVANCE

The findings of this study suggest that homogeneity in the neurobiology of neurodevelopmental conditions transcends diagnostic boundaries and is instead associated with behavioral characteristics. This work takes an important step toward translating neurobiological subgroups into clinical settings by being the first to replicate our findings in independently collected data sets.

摘要

重要性

神经发育障碍,如自闭症谱系障碍(ASD)、注意缺陷/多动障碍(ADHD)和强迫症(OCD),具有高度异质和重叠的表型和神经生物学特征。数据驱动的方法开始识别儿童同质的跨诊断亚组;然而,这些发现尚未在独立收集的数据集中得到复制,这是转化为临床环境的必要条件。

目的

使用来自两个大型独立数据集的数据,确定患有和不患有神经发育障碍的儿童的亚组,这些儿童具有共同的功能脑特征。

设计、设置和参与者:本病例对照研究使用了安大略省神经发育(POND)网络(研究招募于 2012 年 6 月开始,正在进行中;数据于 2021 年 4 月提取)和健康大脑网络(HBN;研究招募于 2015 年 5 月开始,正在进行中;数据于 2020 年 11 月提取)的数据。POND 和 HBN 数据分别来自安大略省和纽约的机构。参与者的诊断为 ASD、ADHD 和 OCD,或为典型发育(TD);年龄在 5 至 19 岁之间;并且成功完成了静息状态和解剖神经影像学协议,均包括在当前研究中。

主要结果和措施

分析包括对来自每个参与者静息状态功能连接组的测量值进行数据驱动的聚类程序,在每个数据集上独立进行。在决策树的聚类结果中,每对叶子之间的差异用人口统计学和临床特征来检验。

结果

总体而言,每个数据集包括 551 名儿童和青少年。POND 包括 164 名 ADHD 患者;217 名 ASD 患者;60 名 OCD 患者;和 110 名 TD 患者(中位数[IQR]年龄,11.87[9.51-14.76]岁;393[71.2%]男性参与者;20[3.6%]黑人,28[5.1%]拉丁裔,和 299[54.2%]白人参与者),HBN 包括 374 名 ADHD 患者;66 名 ASD 患者;11 名 OCD 患者;和 100 名 TD 患者(中位数[IQR]年龄,11.50[9.22-14.20]岁;390[70.8%]男性参与者;82[14.9%]黑人,57[10.3%]西班牙裔,和 257[46.6%]白人参与者)。在两个数据集中,都确定了具有相似生物学特征的亚组,这些亚组在智力以及多动和冲动问题方面有显著差异,但这些组与当前的诊断类别没有一致的对应关系。例如,在 POND 数据中(C 和 D),有两个亚组的 ADHD 症状和正常行为多动/冲动量表(SWAN-HI)存在显著差异,亚组 D 比亚组 C 具有更多的多动和冲动特征(中位数[IQR],2.50[0.00-7.00]vs1.00[0.00-5.00];U=1.19×104;P=0.01;η2=0.02)。在 HBN 数据中,也观察到亚组 g 和 d 之间的 SWAN-HI 评分存在显著差异(中位数[IQR],1.00[0.00-4.00]vs0.00[0.00-2.00];校正 P=0.02)。在两个数据集中,每个亚组的每个诊断的比例都没有差异。

结论和相关性

这项研究的结果表明,神经发育障碍的神经生物学同质性超越了诊断界限,而是与行为特征相关。这项工作通过在独立收集的数据集中复制我们的发现,朝着将神经生物学亚组转化为临床环境迈出了重要的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8431/10011941/cdad30407c8d/jamanetwopen-e232066-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验