Chen Hailan, Wang Yijian, Wu Lihua, Hu Hao, Yan Jiaquan, Xu Haiping, Lei Guowei
School of Science, Jimei University, Xiamen, 361021, China.
Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, School of Computer and Big Data, Minjiang University, Fuzhou, 350121, China.
Sci Rep. 2025 Aug 30;15(1):31975. doi: 10.1038/s41598-025-15404-y.
Underwater imagery frequently exhibits low clarity and is subject to significant color distortion as a result of the inherent conditions of the marine environment and variations in illumination. Such degradation in image quality fundamentally undermines the efficacy of marine ecological monitoring and the detection of underwater targets. To address this issue, we present a Mamba-Convolution network for Underwater Image Enhancement (MC-UIE). Concretely, we first use a standard convolution layer with a 3×3 kernel to obtain initial image feature maps. Then, we develop an iterable Mamba-Convolution Hybrid Block (M-C HB) to enhance the global and local dependency of image feature maps. The core of the M-C HB is the 2D Selective Scan (SS2D) and Feature Attention Module (FAM), which can more efficiently learn the global and local dependency of images. After that, a Cross Fusion Mamba Block (CFMB) is designed to fuse image feature maps of different levels. Finally, extensive qualitative and quantitative experiments on mainstream datasets demonstrate that the proposed method significantly outperforms existing methods in color, illumination, and detail restoration. Our code and results are available at: https://github.com/WYJGR/MC-Net/ .
由于海洋环境的固有条件和光照变化,水下图像常常清晰度较低且存在明显的颜色失真。图像质量的这种下降从根本上削弱了海洋生态监测和水下目标检测的效果。为了解决这个问题,我们提出了一种用于水下图像增强的曼巴卷积网络(MC-UIE)。具体来说,我们首先使用一个具有3×3内核的标准卷积层来获取初始图像特征图。然后,我们开发了一个可迭代的曼巴卷积混合块(M-C HB)来增强图像特征图的全局和局部依赖性。M-C HB的核心是二维选择性扫描(SS2D)和特征注意力模块(FAM),它们可以更有效地学习图像的全局和局部依赖性。之后,设计了一个交叉融合曼巴块(CFMB)来融合不同层次的图像特征图。最后,在主流数据集上进行的大量定性和定量实验表明,所提出的方法在颜色、光照和细节恢复方面显著优于现有方法。我们的代码和结果可在以下网址获取:https://github.com/WYJGR/MC-Net/ 。