Ye Shuming, Liu Guangsheng, Ren Xiaodong, Wang Ruohao, Yuan Wenbin, Yang Hang, Lin Feng, Li Mingliang, Wang Chong, Zhang Wen-Hua
International Joint Research Center for Optoelectronic and Energy Materials, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Southwest United Graduate School, School of Materials and Energy, Yunnan University, Kunming 650504, China.
International Joint Research Center for Optoelectronic and Energy Materials, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Southwest United Graduate School, School of Materials and Energy, Yunnan University, Kunming 650504, China.
J Colloid Interface Sci. 2025 Aug 27;702(Pt 1):138853. doi: 10.1016/j.jcis.2025.138853.
The uncontrolled rapid crystallization inherent in one-step solution process for perovskite films preparation often results in poor crystalline quality and compromised stability, presenting a major obstacle to achieving high-performance perovskite solar cells (PSCs). To overcome this challenge, we propose a multifunctional additive strategy employing Sulfalene (SL), a sulfonyl-based molecule with dual π-conjugated rings, to precisely regulate crystallization dynamics and produce a high-quality crystalline perovskite film. Experimental results show that the electron-rich oxygen atoms in SL form robust coordination bonds with undercoordinated Pb, effectively modulating crystallization dynamics and extending the crystallization process. This yields perovskite films with large grain sizes and reduced internal stress, thereby suppressing non-radiative carrier recombination. In addition, the π-conjugated architecture of SL significantly optimizes energy band alignment by elevating the Fermi level and enhancing surface contact potential. Consequently, inverted PSCs incorporating SL-treated perovskite light absorbers achieve a champion power conversion efficiency (PCE) of 24.91 % (vs. 23.85 % for control), and exhibit exceptional operational stability. This work not only elucidates the dual role of π-conjugated sulfonyl additives in crystallization modulation and energy-level engineering but also provides a paradigm for designing multifunctional molecules to advance perovskite optoelectronics.
在用于制备钙钛矿薄膜的一步溶液法中,固有的不受控制的快速结晶通常会导致结晶质量差和稳定性受损,这是实现高性能钙钛矿太阳能电池(PSC)的主要障碍。为了克服这一挑战,我们提出了一种多功能添加剂策略,即使用硫富烯(SL),一种具有双π共轭环的磺酰基分子,来精确调节结晶动力学并制备高质量的结晶钙钛矿薄膜。实验结果表明,SL中富含电子的氧原子与配位不足的Pb形成强配位键,有效调节结晶动力学并延长结晶过程。这产生了具有大晶粒尺寸和降低内应力的钙钛矿薄膜,从而抑制了非辐射载流子复合。此外,SL的π共轭结构通过提高费米能级和增强表面接触电势,显著优化了能带排列。因此,采用经SL处理的钙钛矿光吸收体的倒置PSC实现了24.91%的最佳功率转换效率(PCE)(对照为23.85%),并表现出优异的运行稳定性。这项工作不仅阐明了π共轭磺酰基添加剂在结晶调制和能级工程中的双重作用,还为设计多功能分子以推动钙钛矿光电子学提供了范例。