Mohanty Swaraj, Sharma Poornima, Ahmad Yasmin
Disruptive & Deterrence Technology (DDT) Division, Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R & D Organization (DRDO), Timarpur, New Delhi, 110054, India.
Sci Rep. 2025 Aug 31;15(1):32024. doi: 10.1038/s41598-025-15539-y.
The outburst of pulmonary disorders among the society has shown the devastating effect of undergoing a delay in diagnosis and treatment. Sometimes the traditional methods in detecting and treating the airway disease fail to cure efficiently due to a lack of pathophysiological descriptions along with the molecular expression. The studies published so far are missing the collective information of the pathways and the role of signature molecules during the disease that constricts the use of therapeutics like nitric oxide(NO) and hydrogen sulfide(HS). In this mini systemic research article, we have followed the deep machine learning approach that is based on the artificial intelligence algorithm as a background search engine that compares various reported scientific studies and database information by building a network analysis platform to better understand the molecular pathways that show a correlation with the other molecules. We followed the MEDLINE search to list the published studies for all the major pulmonary diseases, and the published literature from the NIH database was used to list out the genes and translated proteins associated with the major pulmonary diseases. For the pathways and the associated molecular information, the ShinyGo tool has been used. The published studies till December 2023 have been represented in this article. Bioinformatics analysis of the disease was analyzed based on the expression profiles of the genes and the major proteins from the protein-protein interaction STRING network, concluding that the perturbed molecules interplay a vital role in the progression of airway diseases and targeting the major pathways can be a possible therapeutic intervention for curing the disease.
社会中肺部疾病的爆发已显示出诊断和治疗延迟所带来的毁灭性影响。有时,由于缺乏病理生理学描述以及分子表达,传统的气道疾病检测和治疗方法无法有效治愈疾病。迄今为止发表的研究缺少疾病期间信号通路的综合信息以及标志性分子的作用,这限制了一氧化氮(NO)和硫化氢(HS)等治疗方法的使用。在这篇小型系统研究文章中,我们采用了基于人工智能算法的深度机器学习方法,作为背景搜索引擎,通过构建网络分析平台来比较各种已报道的科学研究和数据库信息,以更好地理解与其他分子显示出相关性的分子通路。我们通过MEDLINE搜索列出了所有主要肺部疾病的已发表研究,并使用美国国立医学图书馆(NIH)数据库中的已发表文献列出了与主要肺部疾病相关的基因和翻译后的蛋白质。对于信号通路和相关分子信息,我们使用了ShinyGo工具。本文呈现了截至2023年12月的已发表研究。基于基因和来自蛋白质-蛋白质相互作用STRING网络的主要蛋白质的表达谱对疾病进行生物信息学分析,得出结论:受干扰的分子在气道疾病进展中起着至关重要的作用,针对主要信号通路可能是治愈该疾病的一种治疗干预措施。