Suppr超能文献

利用二维量子传感器探测高压下的应力和磁性。

Probing stress and magnetism at high pressures with two-dimensional quantum sensors.

作者信息

He Guanghui, Gong Ruotian, Wang Zhipan, Liu Zhongyuan, Hong Jeonghoon, Zhang Tongxie, Riofrio Ariana L, Rehfuss Zackary, Chen Mingfeng, Yao Changyu, Poirier Thomas, Ye Bingtian, Wang Xi, Ran Sheng, Edgar James H, Zhang Shixiong, Yao Norman Y, Zu Chong

机构信息

Department of Physics, Washington University, St. Louis, MO, USA.

Department of Physics, Harvard University, Cambridge, MA, USA.

出版信息

Nat Commun. 2025 Sep 1;16(1):8162. doi: 10.1038/s41467-025-63535-7.

Abstract

Pressure serves as a fundamental tuning parameter capable of drastically modifying all properties of matter. The advent of diamond anvil cells (DACs) has enabled a compact and tabletop platform for generating extreme pressure conditions in laboratory settings. However, the limited spatial dimensions and ultrahigh pressures within these environments present significant challenges for conventional spectroscopy techniques. In this work, we integrate optical spin defects within a thin layer of two-dimensional (2D) materials directly into the high-pressure chamber, enabling an in situ quantum sensing platform for mapping local stress and magnetic environments up to 3.5 GPa. Compared to nitrogen-vacancy (NV) centers embedded in diamond anvils, our 2D sensors exhibit around three times stronger response to local stress and provide nanoscale proximity to the target sample in heterogeneous devices. We showcase the versatility of our approach by imaging both stress gradients within the high-pressure chamber and a pressure-driven magnetic phase transition in a room-temperature self-intercalated van der Waals ferromagnet, CrTe. Our work demonstrates an integrated quantum sensing device for high-pressure experiments, offering potential applications in probing pressure-induced phenomena such as superconductivity, magnetism, and mechanical deformation.

摘要

压力是一种基本的调节参数,能够极大地改变物质的所有性质。金刚石对顶砧(DAC)的出现,为在实验室环境中产生极端压力条件提供了一个紧凑的桌面平台。然而,这些环境中的有限空间尺寸和超高压力,给传统光谱技术带来了重大挑战。在这项工作中,我们将二维(2D)材料薄层中的光学自旋缺陷直接集成到高压腔中,从而实现了一个原位量子传感平台,用于绘制高达3.5 GPa的局部应力和磁环境。与嵌入金刚石对顶砧中的氮空位(NV)中心相比,我们的二维传感器对局部应力的响应要强约三倍,并在异质器件中提供与目标样品的纳米级接近度。我们通过对高压腔内的应力梯度以及室温下自插层范德华铁磁体CrTe中的压力驱动磁相变进行成像,展示了我们方法的通用性。我们的工作展示了一种用于高压实验的集成量子传感装置,在探测压力诱导现象(如超导、磁性和机械变形)方面具有潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验