Howell Nick, Weiss Zoe, Bonnycastle Lori L, Grenko Caleb M, Randazzo Davide, Dampier Christopher H, Sinha Neelam, Narisu Narisu, Swift Amy J, Erdos Michael R, Biesecker Leslie G, Collins Francis S, Robertson Catherine C, Taylor D Leland
Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
Sci Data. 2025 Sep 1;12(1):1526. doi: 10.1038/s41597-025-05450-6.
Understanding the spatial distribution of gene expression in the pancreas is essential for establishing the molecular basis of pancreatic function in healthy and disease contexts. Recent platforms offer a robust method for quantifying gene expression within a spatial context. Here, we report spatial transcriptomic profiling from pancreas samples obtained from three donors with type 2 diabetes (T2D) and three donors with normal glucose tolerance (NGT). Our analysis identified a major technical challenge: substantial transcript bleed of highly abundant genes (e.g., INS and GCG) into adjacent tissue regions. We demonstrate that this bleed can be computationally corrected using probabilistic models. Our analysis highlights the importance of incorporating bleed-correction techniques in the preprocessing of spatial transcriptomic profiling data. In summary, this study provides a dataset, methods, and resources to investigate the spatial regulation of gene expression in normal and T2D-affected human pancreas.
了解胰腺中基因表达的空间分布对于在健康和疾病背景下建立胰腺功能的分子基础至关重要。最近的平台提供了一种在空间背景下量化基因表达的强大方法。在这里,我们报告了从三名2型糖尿病(T2D)供体和三名糖耐量正常(NGT)供体获得的胰腺样本的空间转录组分析。我们的分析确定了一个主要技术挑战:高丰度基因(如INS和GCG)大量转录本渗漏到相邻组织区域。我们证明,这种渗漏可以使用概率模型进行计算校正。我们的分析强调了在空间转录组分析数据预处理中纳入渗漏校正技术的重要性。总之,本研究提供了一个数据集、方法和资源,用于研究正常和T2D影响的人类胰腺中基因表达的空间调控。