Andrzejewski Samuel J, Friedman Anika J, Mains Kathryn, Thompson Annette, Hamel Nathaniel L, Sankaran Banumathi, Zwart Peter H, Shirts Michael R, Fox Jerome M
Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
Department of Biochemistry, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
Angew Chem Int Ed Engl. 2025 Sep 26;64(40):e202508316. doi: 10.1002/anie.202508316. Epub 2025 Sep 1.
Assembly-line enzymes carry out multistep synthesis of important metabolites by using acyl carrier proteins (ACPs) to shuttle intermediates along defined sequences of active sites. Despite longstanding interest in reprogramming these systems for metabolic engineering and biosynthetic chemistry, the mechanisms underlying their reaction order remain poorly understood and difficult to control. Here we describe a β-ketoacyl-ACP reductase from Pseudomonas putida (PpFabG4) with an unusual selectivity for medium chains and use it to explore the molecular basis of substrate specificity in enzymes that pull intermediates from fatty acid synthesis, a common route to specialized products. X-ray crystallography shows no obvious barriers to short-chain binding. Molecular simulations and supporting mutational analyses indicate that substrate preference arises instead from a weak enzyme-ACP interaction that is stabilized by medium acyl chains but not by short chains. Indeed, mutations that strengthen this interaction for PpFabG4 or weaken it for EcFabG, an Escherichia coli β-ketoacyl-ACP reductase with a broad substrate specificity, can enhance or reduce activity on short-chain substrates by over 100-fold. Our findings show how the stability of enzyme-ACP interactions can control substrate scope in promiscuous enzymes and guide the exchange of intermediates between (and within) assembly-line systems.
流水线式的酶通过利用酰基载体蛋白(ACPs)沿着确定的活性位点序列穿梭中间体,来进行重要代谢物的多步合成。尽管长期以来人们一直对重新编程这些系统用于代谢工程和生物合成化学感兴趣,但它们反应顺序背后的机制仍知之甚少且难以控制。在这里,我们描述了一种来自恶臭假单胞菌的β-酮酰-ACP还原酶(PpFabG4),它对中链具有不寻常的选择性,并利用它来探索从脂肪酸合成中提取中间体的酶的底物特异性的分子基础,脂肪酸合成是通往特殊产物的常见途径。X射线晶体学显示短链结合没有明显障碍。分子模拟和支持性的突变分析表明,底物偏好反而源于一种弱的酶-ACP相互作用,这种相互作用由中链酰基稳定,但不由短链稳定。事实上,增强PpFabG4这种相互作用或削弱大肠杆菌β-酮酰-ACP还原酶EcFabG(具有广泛底物特异性)这种相互作用的突变,可以使短链底物的活性提高或降低100倍以上。我们的研究结果表明,酶-ACP相互作用的稳定性如何控制混杂酶中的底物范围,并指导流水线式系统之间(以及系统内部)中间体的交换。