Suppr超能文献

使用随机参数logit模型和集成机器学习方法研究影响动物与车辆碰撞事故中伤亡情况的因素。

Investigating factors influencing fatalities and injuries in animal-vehicle crashes using a random parameters logit model and ensemble machine learning approaches.

作者信息

Zawad Md Nabil, Almannaa Mohammed, Alkahtani Khalid F

机构信息

Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2025 Sep 2;20(9):e0331197. doi: 10.1371/journal.pone.0331197. eCollection 2025.

Abstract

Animal-vehicle crashes (AVC) pose risks in rural areas, often leading to casualties and injuries. Despite their infrequent occurrence, AVC can have significant consequences, especially when larger animals are involved. This study investigates factors contributing to fatalities and injuries resulting from animal-involved collisions. It examines 24 variables using 1403 animal-vehicle crash observations on intercity and major intra-city roads from 2016-2021. The study employs a random parameters logit model (RPLM) and ensemble machine learning approaches to explore the contributory factors in crashes. The RPLM accounts for unobserved heterogeneity, identifying significant variables. Meanwhile, the ensemble learner and Shapley Additive exPlanations (SHAP) provide further insights. Key findings show that expressways, roads with one or two lanes per direction, horizontal curvature, and structurally poor pavement surfaces increase the risk of severe crashes, i.e., fatalities and injuries. Side fence barriers and speed bumps also impact crash severity. The absence of side fencing and damaged fencing both positively influence severe crashes, while the presence of speed bumps is likely to increase severe crashes. Camel exposure, vacation-period crashes, and adverse weather also play positive roles. However, heavy truck involvement is negatively associated with severe crashes. Policymakers and road safety authorities can use these findings to implement effective countermeasures to prevent such collisions.

摘要

动物与车辆碰撞事故(AVC)在农村地区构成风险,常常导致人员伤亡。尽管此类事故发生频率不高,但AVC可能会造成重大后果,尤其是涉及大型动物时。本研究调查了导致动物相关碰撞事故造成人员伤亡的因素。它利用2016年至2021年间在城际和主要市内道路上的1403起动物与车辆碰撞事故观测数据,对24个变量进行了研究。该研究采用随机参数logit模型(RPLM)和集成机器学习方法来探究碰撞事故中的促成因素。RPLM考虑了未观测到的异质性,识别出显著变量。同时,集成学习器和夏普利值附加解释(SHAP)提供了进一步的见解。主要研究结果表明,高速公路、单向一车道或两车道的道路、水平曲率以及结构状况不佳的路面会增加严重碰撞事故(即人员伤亡)的风险。路侧围栏和减速带也会影响碰撞事故的严重程度。没有路侧围栏以及围栏损坏均对严重碰撞事故有正向影响,而减速带的存在则可能增加严重碰撞事故。骆驼出现、假期期间发生的碰撞事故以及恶劣天气也起到正向作用。然而,重型卡车的参与与严重碰撞事故呈负相关。政策制定者和道路安全管理部门可利用这些研究结果实施有效的应对措施,以预防此类碰撞事故。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cf1/12404393/34fd1517cb97/pone.0331197.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验