Suppr超能文献

机器学习与深度图学习用于化学生态毒理学预测的比较评估

A Comparative Evaluation of Machine Learning and Deep Graph Learning for Chemical Ecotoxicological Prediction.

作者信息

Lou Xinpo, Cai Jianxiu, Un Chon-Wai, Siu Shirley W I

机构信息

Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.

School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467036, China.

出版信息

ACS Omega. 2025 Aug 12;10(33):37549-37560. doi: 10.1021/acsomega.5c03753. eCollection 2025 Aug 26.

Abstract

Regulating chemicals to protect the environment based on ecotoxicological assessments is a major challenge. However, experimental ecotoxicity tests are time-consuming and expensive, which underscores the need for accurate prediction methods. In this study, we conducted a comprehensive analysis on the application of machine learning and graph-based learning techniques for the ecotoxicological prediction of chemicals. A total of 161 models were constructed using a combination of three molecular representations (Morgan, MACCS, and Mol2vec), six machine learning algorithms (KNN, NB, RF, SVM, XGB, and DNN), and five graph neural networks (GAT, GCN, MPNN, Attentive FP, and FPGNN). In predicting the ecotoxicity of three aquatic taxonomic groups - fish, crustaceans, and algae - GCN achieved the best performance overall. In the same-species predictions, GCN models achieved the highest values of area under the ROC curve (AUC), ranging between 0.982 and 0.992. In cross-species predictions, GAT and GCN achieved the best and second-best performance, respectively. However, both models exhibited a reduction of approximately 17% in AUC values when predicting the fish group while being trained on the same chemical data for the crustaceans and algae groups. Interestingly, cross-species predictions for unseen chemicals are only better off by DNN with the MACCS fingerprint, yielding an AUC of 0.821. Our findings underscore the critical need to further advance computational prediction methods in order to accurately predict the ecotoxicity of chemicals across species. The ecotoxicology prediction web server for fish, algae, and crustaceans is accessible at https://app.cbbio.online/ecotoxicology/home.

摘要

基于生态毒理学评估来监管化学品以保护环境是一项重大挑战。然而,实验性生态毒性测试既耗时又昂贵,这凸显了对准确预测方法的需求。在本研究中,我们对机器学习和基于图的学习技术在化学品生态毒理学预测中的应用进行了全面分析。使用三种分子表示(摩根指纹、MACCS 键指纹和 Mol2vec)、六种机器学习算法(KNN、朴素贝叶斯、随机森林、支持向量机、极端梯度提升和深度神经网络)以及五种图神经网络(图注意力网络、图卷积网络、消息传递神经网络、注意力FP网络和FPGNN)的组合构建了总共161个模型。在预测鱼类、甲壳类动物和藻类这三个水生生物分类群的生态毒性时,图卷积网络总体表现最佳。在同物种预测中,图卷积网络模型的ROC曲线下面积(AUC)值最高,范围在0.982至0.992之间。在跨物种预测中,图注意力网络和图卷积网络分别表现最佳和次佳。然而,当在甲壳类动物和藻类组的相同化学数据上进行训练时,这两个模型在预测鱼类组时的AUC值均下降了约17%。有趣的是,对于未见化学品的跨物种预测,只有使用MACCS指纹的深度神经网络表现更好,AUC为0.821。我们的研究结果强调了进一步推进计算预测方法以准确预测化学品跨物种生态毒性的迫切需求。鱼类、藻类和甲壳类动物的生态毒理学预测网络服务器可通过https://app.cbbio.online/ecotoxicology/home访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bf2/12391983/15a0448e3770/ao5c03753_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验