Abouhagger Adei, Andriukonis Eivydas, Grigorianaite Goda, da Silva Raiane Rodrigues, Kasperaviciute Kamile, Stirke Arunas, Ma Melo Wanessa C
Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology (FTMC), 02300 Vilnius, Lithuania.
ACS Omega. 2025 Aug 13;10(33):37994-38001. doi: 10.1021/acsomega.5c04643. eCollection 2025 Aug 26.
Microbial biofilms present significant challenges in healthcare due to their persistence and resistance to antimicrobial treatments. Microfluidic technologies offer a promising alternative to traditional static systems for studying biofilm dynamics under physiologically relevant conditions. In this study, we present a poly-(dimethylsiloxane) (PDMS)-free microfluidic platform fabricated using off-stoichiometry thiol-ene (OSTE) resin and cyclic olefin copolymer (COC) substrates. The device features five independent growth chambers and is designed for compatibility with standard laboratory setups. It enables controlled flow conditions, optical transparency for real-time imaging, and integration with antimicrobial testing protocols. Biofilms of and were cultivated under dynamic flow and compared to static cultures in tissue culture wells. Confocal microscopy was used to assess structural features, viability, and thickness over time. The dynamic environment supported more uniform and spatially organized biofilm growth, while static conditions led to denser but structurally heterogeneous formations. Treatment with different tetracycline concentrations demonstrated effective biofilm disruption, particularly under flow, confirming the platform's utility for evaluating antimicrobial efficacy. With a fabrication cost below five dollars per chip and potential for cleaning and reuse, the platform offers a cost-effective and scalable solution for biofilm research. This study highlights the advantages of OSTE-COC microfluidics in modeling biofilm-associated infections and provides a practical tool for real-time biofilm analysis and therapeutic screening.
微生物生物膜因其持久性和对抗菌治疗的抗性而在医疗保健领域带来了重大挑战。微流控技术为在生理相关条件下研究生物膜动力学提供了一种有前景的替代传统静态系统的方法。在本研究中,我们展示了一种使用非化学计量硫醇-烯(OSTE)树脂和环烯烃共聚物(COC)基板制造的无聚二甲基硅氧烷(PDMS)微流控平台。该设备具有五个独立的生长室,设计用于与标准实验室设置兼容。它能够实现可控的流动条件、用于实时成像的光学透明度以及与抗菌测试协议的集成。在动态流动下培养了 和 的生物膜,并与组织培养孔中的静态培养物进行了比较。共聚焦显微镜用于评估随时间的结构特征、活力和厚度。动态环境支持更均匀且空间组织化的生物膜生长,而静态条件导致形成更密集但结构异质的生物膜。用不同四环素浓度进行处理显示出有效的生物膜破坏,特别是在流动条件下,证实了该平台在评估抗菌功效方面的实用性。由于每个芯片的制造成本低于五美元且具有清洁和重复使用的潜力,该平台为生物膜研究提供了一种经济高效且可扩展的解决方案。本研究突出了OSTE-COC微流控技术在模拟生物膜相关感染方面的优势,并为实时生物膜分析和治疗筛选提供了一种实用工具。