Suppr超能文献

光子计数探测器CT中影像组学的稳健性:采集和重建因素的影响

Robustness of radiomics within photon-counting detector CT: impact of acquisition and reconstruction factors.

作者信息

Zhang Huan, Lu Tingwei, Wang Lingyun, Xing Yue, Hu Yangfan, Xu Zhihan, Lu Junjie, Yang Jiarui, Chu Jingshen, Zhang Benyan, Zhong Jingyu

机构信息

Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Eur Radiol. 2025 Jan 31. doi: 10.1007/s00330-025-11374-x.

Abstract

OBJECTIVES

To assess the impact of acquisition and reconstruction factors on the robustness of radiomics within photon-counting detector CT (PCD-CT).

METHODS

A phantom with twenty-eight texture materials was scanned with different acquisition and reconstruction factors including reposition, scan mode (standard vs high-pitch), tube voltage (120 kVp vs 140 kVp), slice thickness (1.0 mm vs 0.4 mm), radiation dose level (0.5 mGy, 1.0 mGy, 3.0 mGy, 5.0 mGy, vs 10.0 mGy), quantum iterative reconstruction level (0/4, 2/4, vs 4/4), and reconstruction kernel (Qr40, Qr44, vs Qr48). Thirteen sets of virtual monochromatic images at 70-keV were reconstructed. The regions of interest were drawn with rigid registrations. Ninety-three radiomics features were extracted from each material. The reproducibility of radiomics features was evaluated using the intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC). The variability of radiomics features was assessed by coefficient of variation (CV) and quartile coefficient of dispersion (QCD).

RESULTS

The percentage of features with ICC > 0.90 and CCC > 0.90 were high when repositioned (88.2% and 88.2%) and tube voltage was changed (87.1% and 87.1%), but none of the features with ICC > 0.90 and CCC > 0.90 when high-pitch scan and different slice thickness were used. The percentage of features with CV < 10% and QCD < 10% were high when repositioned (47.3% and 68.8%) and tube voltage was changed (64.2% and 71.0%), but that with CV < 10% and QCD < 10% were low between standard and high-pitch scans (16.1% and 26.9%) and slice thickness (19.4% and 29.0%).

CONCLUSIONS

The PCD-CT radiomics was robust to tube voltage, radiation dose, reconstruction strength level, and kernel, but brittle to high-pitch scan and slice thickness.

KEY POINTS

Question The stability of radiomics features against acquisition and reconstruction factors within PCD-CT should be fully determined before academic research and clinical application. Findings The radiomics features are robust against tube voltage, radiation dose, reconstruction strength level, and kernel within PCD-CT but brittle to high-pitch scan and slice thickness. Clinical relevance The high-pitch scan and slice thickness that influence voxel size should be set with careful attention within PCD-CT, to allow a higher robustness of radiomics features before the implementation of radiomics analysis in clinical routine.

摘要

目的

评估采集和重建因素对光子计数探测器CT(PCD-CT)中放射组学稳健性的影响。

方法

使用具有28种纹理材料的体模,采用不同的采集和重建因素进行扫描,包括重新定位、扫描模式(标准与高螺距)、管电压(120 kVp与140 kVp)、层厚(1.0 mm与0.4 mm)、辐射剂量水平(0.5 mGy、1.0 mGy、3.0 mGy、5.0 mGy与10.0 mGy)、量子迭代重建水平(0/4、2/4与4/4)以及重建核(Qr40、Qr44与Qr48)。重建了13组70 keV的虚拟单色图像。通过刚性配准绘制感兴趣区域。从每种材料中提取93个放射组学特征。使用组内相关系数(ICC)和一致性相关系数(CCC)评估放射组学特征的可重复性。通过变异系数(CV)和四分位数离散系数(QCD)评估放射组学特征的变异性。

结果

重新定位(ICC>0.90和CCC>0.90的特征百分比分别为88.2%和88.2%)以及改变管电压(ICC>0.90和CCC>0.90的特征百分比分别为87.1%和87.1%)时,ICC>0.90和CCC>0.90的特征百分比很高,但使用高螺距扫描和不同层厚时,没有ICC>0.90和CCC>0.90的特征。重新定位(CV<10%和QCD<10%的特征百分比分别为47.3%和68.8%)以及改变管电压(CV<10%和QCD<10%的特征百分比分别为64.2%和71.0%)时,CV<10%和QCD<10%的特征百分比很高,但标准扫描与高螺距扫描之间(CV<10%和QCD<10%的特征百分比分别为16.1%和26.9%)以及层厚之间(CV<10%和QCD<10%的特征百分比分别为19.4%和29.0%),CV<10%和QCD<10%的特征百分比很低。

结论

PCD-CT放射组学对管电压、辐射剂量、重建强度水平和重建核具有稳健性,但对高螺距扫描和层厚较为敏感。

关键点

问题 在进行学术研究和临床应用之前,应充分确定PCD-CT中放射组学特征相对于采集和重建因素的稳定性。发现 PCD-CT中的放射组学特征对管电压、辐射剂量、重建强度水平和重建核具有稳健性,但对高螺距扫描和层厚较为敏感。临床意义 在PCD-CT中,应谨慎设置影响体素大小的高螺距扫描和层厚,以便在临床常规中实施放射组学分析之前,使放射组学特征具有更高的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验