文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习图像重建算法对肝肿瘤患者CT影像组学特征的影响

Impact of deep learning image reconstruction algorithms on CT radiomic features in patients with liver tumors.

作者信息

Xue Gongbo, Liu Hongyan, Cai Xiaoyi, Zhang Zhen, Zhang Shuai, Liu Ling, Hu Bin, Wang Guohua

机构信息

Department of Radiology, Qingdao Municipal Hospital, Qingdao, China.

Graduate School, Dalian Medical University, Dalian, China.

出版信息

Front Oncol. 2023 Apr 5;13:1167745. doi: 10.3389/fonc.2023.1167745. eCollection 2023.


DOI:10.3389/fonc.2023.1167745
PMID:37091167
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10113560/
Abstract

OBJECTIVE: To evaluate the impact of deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) on abdominal CT radiomic features acquired in portal venous phase in liver tumor patients. METHODS: Sixty patients with liver tumors who underwent contrast-enhanced abdominal CT were retrospectively enrolled. Six groups including filtered back projection (FBP), ASIR-V (30%, 70%) and DLIR at low (DLIR-L), medium (DLIR-M and high (DLIR-H), were reconstructed using portal venous phase data. CT-based radiomic features (first-order, texture and wavelet features) were extracted from 2D and 3D liver tumors, peritumor and liver parenchyma. All features were analyzed for comparison. < 0.05 indicated statistically different. The consistency of 3D lesion feature extraction was assessed by calculating intraclass correlation coefficient (ICC). RESULTS: Different reconstruction algorithms influenced most radiomic features. The percentages of first-order, texture and wavelet features without statistical difference among 2D and 3D lesions, peritumor and liver parenchyma for all six groups were 27.78% (5/18), 5.33% (4/75) and 5.56% (1/18), respectively (all > 0.05), and they decreased while the level of reconstruction strengthened for both ASIR-V and DLIR. Compared with FBP, the features of ASIR-V30% and 70% without statistical difference decreased from 71.31% to 23.95%, and DLIR-L, DLIR-M, and DLIR-H decreased from 31.65% to 27.11% and 23.73%. Among texture features, unaffected features of peritumor were larger than those of lesions and liver parenchyma, and unaffected 3D lesions features were larger than those of 2D lesions. The consistency of 3D lesion first-order features was excellent, with intra- and inter-observer ICCs ranging from 0.891 to 0.999 and 0.880 to 0.998. CONCLUSIONS: Both ASIR-V and DLIR algorithms with different strengths influenced the radiomic features of abdominal CT images in portal venous phase, and the influences aggravated as reconstruction strength increased.

摘要

目的:评估深度学习图像重建(DLIR)和自适应统计迭代重建-Veo(ASIR-V)对肝肿瘤患者门静脉期腹部CT影像组学特征的影响。 方法:回顾性纳入60例行腹部增强CT的肝肿瘤患者。使用门静脉期数据重建六组图像,包括滤波反投影(FBP)、ASIR-V(30%、70%)以及低剂量(DLIR-L)、中等剂量(DLIR-M)和高剂量(DLIR-H)的DLIR。从二维和三维肝肿瘤、瘤周组织及肝实质中提取基于CT的影像组学特征(一阶、纹理和小波特征)。对所有特征进行分析比较。P<0.05表示差异有统计学意义。通过计算组内相关系数(ICC)评估三维病变特征提取的一致性。 结果:不同的重建算法影响了大多数影像组学特征。六组中二维和三维病变、瘤周组织及肝实质中一阶、纹理和小波特征无统计学差异的百分比分别为27.78%(5/18)、5.33%(4/75)和5.56%(1/18)(均P>0.05),且随着ASIR-V和DLIR重建强度的增加而降低。与FBP相比,ASIR-V 30%和70%无统计学差异的特征从71.31%降至23.95%,DLIR-L、DLIR-M和DLIR-H从31.65%降至27.11%和23.73%。在纹理特征中,瘤周组织未受影响的特征大于病变和肝实质,三维病变未受影响的特征大于二维病变。三维病变一阶特征的一致性良好,观察者内和观察者间ICC范围分别为0.891至0.999和0.880至0.998。 结论:不同强度的ASIR-V和DLIR算法均影响门静脉期腹部CT图像的影像组学特征,且随着重建强度的增加,影响加剧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/f790fe1922fe/fonc-13-1167745-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/39a81c0c9c32/fonc-13-1167745-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/cdce6fca2bc7/fonc-13-1167745-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/36ab09eb82c3/fonc-13-1167745-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/a18128df82c3/fonc-13-1167745-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/e76d9e303542/fonc-13-1167745-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/f790fe1922fe/fonc-13-1167745-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/39a81c0c9c32/fonc-13-1167745-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/cdce6fca2bc7/fonc-13-1167745-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/36ab09eb82c3/fonc-13-1167745-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/a18128df82c3/fonc-13-1167745-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/e76d9e303542/fonc-13-1167745-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f1e/10113560/f790fe1922fe/fonc-13-1167745-g006.jpg

相似文献

[1]
Impact of deep learning image reconstruction algorithms on CT radiomic features in patients with liver tumors.

Front Oncol. 2023-4-5

[2]
Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT.

J Comput Assist Tomogr. 2024

[3]
Deep learning imaging reconstruction of reduced-dose 40 keV virtual monoenergetic imaging for early detection of colorectal cancer liver metastases.

Eur J Radiol. 2023-11

[4]
Impact of deep learning-based image reconstruction on image quality compared with adaptive statistical iterative reconstruction-Veo in renal and adrenal computed tomography.

J Xray Sci Technol. 2022

[5]
Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: A phantom study.

Phys Med. 2020-8

[6]
Improving spatial resolution and diagnostic confidence with thinner slice and deep learning image reconstruction in contrast-enhanced abdominal CT.

Eur Radiol. 2023-3

[7]
The value of a deep learning image reconstruction algorithm in whole-brain computed tomography perfusion in patients with acute ischemic stroke.

Quant Imaging Med Surg. 2023-12-1

[8]
Impact of deep learning-based image reconstruction on image quality and lesion visibility in renal computed tomography at different doses.

Quant Imaging Med Surg. 2023-4-1

[9]
Multi-reader multiparametric DECT study evaluating different strengths of iterative and deep learning-based image reconstruction techniques.

Eur Radiol. 2025-2

[10]
Image quality of coronary CT angiography at ultra low tube voltage reconstructed with a deep-learning image reconstruction algorithm in patients of different weight.

Quant Imaging Med Surg. 2023-6-1

引用本文的文献

[1]
Impact of a deep learning image reconstruction algorithm on the robustness of abdominal computed tomography radiomics features using standard and low radiation doses.

Quant Imaging Med Surg. 2025-9-1

本文引用的文献

[1]
CT image quality evaluation in the age of deep learning: trade-off between functionality and fidelity.

Eur Radiol. 2023-4

[2]
Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-8-28

[3]
Deep learning-based reconstruction on cardiac CT yields distinct radiomic features compared to iterative and filtered back projection reconstructions.

Sci Rep. 2022-9-7

[4]
A Novel Multimodal Radiomics Model for Predicting Prognosis of Resected Hepatocellular Carcinoma.

Front Oncol. 2022-3-7

[5]
Reduced-Dose Deep Learning Reconstruction for Abdominal CT of Liver Metastases.

Radiology. 2022-4

[6]
Development and Validation of a Model Including Distinct Vascular Patterns to Estimate Survival in Hepatocellular Carcinoma.

JAMA Netw Open. 2021-9-1

[7]
Effect of adaptive statistical iterative reconstruction-V (ASiR-V) levels on ultra-low-dose CT radiomics quantification in pulmonary nodules.

Quant Imaging Med Surg. 2021-6

[8]
Influence of Adaptive Statistical Iterative Reconstructions on CT Radiomic Features in Oncologic Patients.

Diagnostics (Basel). 2021-5-31

[9]
Prediction of Microvascular Invasion in Hepatocellular Carcinoma With a Multi-Disciplinary Team-Like Radiomics Fusion Model on Dynamic Contrast-Enhanced Computed Tomography.

Front Oncol. 2021-3-16

[10]
CT iterative vs deep learning reconstruction: comparison of noise and sharpness.

Eur Radiol. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索