Suppr超能文献

李雅普诺夫理论证明了系统巩固速度的一个基本限制。

Lyapunov theory demonstrating a fundamental limit on the speed of systems consolidation.

作者信息

Alemi Alireza, Aksay Emre R F, Goldman Mark S

机构信息

Center for Neuroscience, and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California 95616, USA.

Institute for Computational Biomedicine and Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10021, USA.

出版信息

Phys Rev Res. 2025 Apr-Jun;7(2). doi: 10.1103/physrevresearch.7.023174. Epub 2025 May 21.

Abstract

The nervous system reorganizes memories from an early site to a late site, a commonly observed feature of learning and memory systems known as systems consolidation. Previous work has suggested learning rules by which consolidation may occur. Here, we provide conditions under which such rules are guaranteed to lead to stable convergence of learning and consolidation. We use the theory of Lyapunov functions, which enforces stability by requiring learning rules to decrease an energy-like (Lyapunov) function. We present the theory in the context of a simple circuit architecture motivated by classic models of cerebellum-mediated learning and consolidation. Stability is only guaranteed if the learning rate in the late stage is not faster than the learning rate in the early stage. Further, the slower the learning rate at the late stage, the larger the perturbation the system can tolerate with a guarantee of stability. We provide intuition for this result by mapping a simple example consolidation model to a damped driven oscillator system and showing that the ratio of early- to late-stage learning rates in the consolidation model can be directly identified with the oscillator's damping ratio. We then apply the theory to modeling the tuning by the cerebellum of a well-characterized analog short-term memory system, the oculomotor neural integrator, and find similar stability conditions. This work suggests the power of the Lyapunov approach to provide constraints on nervous system function.

摘要

神经系统会将记忆从早期位点重新组织到晚期位点,这是学习和记忆系统中一种常见的特征,被称为系统巩固。先前的研究提出了巩固可能发生的学习规则。在此,我们给出了能保证此类规则导致学习和巩固稳定收敛的条件。我们运用李雅普诺夫函数理论,该理论通过要求学习规则降低一个类似能量的(李雅普诺夫)函数来确保稳定性。我们在由小脑介导的学习和巩固的经典模型所激发的简单电路架构背景下阐述该理论。只有当晚期的学习速率不超过早期的学习速率时,稳定性才能得到保证。此外,晚期的学习速率越慢,系统在保证稳定性的情况下能够容忍的扰动就越大。我们通过将一个简单的示例巩固模型映射到一个阻尼驱动振子系统,并表明巩固模型中早期与晚期学习速率的比值可直接等同于振子的阻尼比,从而为这一结果提供直观解释。然后,我们将该理论应用于对一个特征明确的模拟短期记忆系统——动眼神经积分器的小脑调节进行建模,并发现了类似的稳定性条件。这项工作表明了李雅普诺夫方法在为神经系统功能提供约束方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a607/12392100/22e821af75d2/nihms-2105598-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验