Suppr超能文献

基于眼底照片的可转诊性青光眼检测的基础模型与监督学习模型比较

Comparison of Foundation and Supervised Learning-Based Models for Detection of Referable Glaucoma from Fundus Photographs.

作者信息

Bolo Kyle, Nguyen Tran Huy, Iyengar Sreenidhi, Li Zhiwei, Nguyen Van, Wong Brandon J, Do Jiun L, Ambite Jose-Luis, Kesselman Carl, Daskivich Lauren P, Xu Benjamin Y

机构信息

Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.

出版信息

medRxiv. 2025 Aug 24:2025.08.21.25334170. doi: 10.1101/2025.08.21.25334170.

Abstract

PURPOSE

To compare the performance of a foundation model and a supervised learning-based model for detecting referable glaucoma from fundus photographs.

DESIGN

Evaluation of diagnostic technology.

PARTICIPANTS

6,116 participants from the Los Angeles County Department of Health Services Teleretinal Screening Program.

METHODS

Fundus photographs were labeled for referable glaucoma (cup-to-disc ratio ≥ 0.6) by certified optometrists. Four deep learning models were trained on cropped and uncropped images (Training N = 8,996; Validation N = 3,002) using two architectures: a vision transformer with self-supervised pretraining on fundus photographs (RETFound) and a convolutional neural network (VGG-19). Models were evaluated on a held-out test set (N = 1,000) labeled by glaucoma specialists and an external test set (N = 300) from University of Southern California clinics. Performance was assessed while varying training set size and stratifying by demographic factors. xRAI was used for saliency mapping.

MAIN OUTCOME MEASURES

Area under the receiver operating characteristic curve (AUC-ROC) and threshold-specific metrics.

RESULTS

The cropped image VGG-19 model achieved the highest AUC-ROC (0.924 [0.907-0.940]), which was comparable ( = 0.07) to the cropped image RETFound model (0.911 [0.892-0.930]), which achieved the highest Youden-optimal performance (sensitivity 82.6%, specificity 88.2%) and F1 score (0.801). Cropped image models outperformed their uncropped counterparts within each architecture ( < 0.001 for AUC-ROC comparisons). RETFound models had a performance advantage when trained on smaller datasets (N < 2000 images), and the uncropped image RETFound model performed best on external data ( < 0.001 for AUC-ROC comparisons). The cropped image RETFound model performed consistently across ethnic groups ( = 0.20), while the others did not ( < 0.04); performance did not vary by age or gender. Saliency maps for both architectures consistently included the optic nerve.

CONCLUSION

While both RETFound and VGG-19 models performed well for classification of referable glaucoma, foundation models may be preferable when training data is limited and when domain shift is expected. Training models using images cropped to the region of the optic nerve improves performance regardless of architecture but may reduce model generalizability.

摘要

目的

比较基础模型和基于监督学习的模型从眼底照片中检测可转诊性青光眼的性能。

设计

诊断技术评估。

参与者

来自洛杉矶县卫生服务部远程视网膜筛查项目的6116名参与者。

方法

由认证验光师对眼底照片进行可转诊性青光眼(杯盘比≥0.6)标注。使用两种架构在裁剪和未裁剪图像上训练四个深度学习模型(训练集N = 8996;验证集N = 3002):一种是在眼底照片上进行自监督预训练的视觉Transformer(RETFound),另一种是卷积神经网络(VGG - 19)。在由青光眼专家标注的保留测试集(N = 1000)和来自南加州大学诊所的外部测试集(N = 300)上对模型进行评估。在改变训练集大小并按人口统计学因素分层的情况下评估性能。使用xRAI进行显著性映射。

主要观察指标

受试者操作特征曲线下面积(AUC - ROC)和特定阈值指标。

结果

裁剪图像的VGG - 19模型达到最高的AUC - ROC(0.924[0.907 - 0.940]),与裁剪图像的RETFound模型(0.911[0.892 - 0.930])相当(P = 0.07),后者达到最高的约登最优性能(灵敏度82.6%,特异性88.2%)和F1分数(0.801)。在每种架构中,裁剪图像模型均优于未裁剪图像模型(AUC - ROC比较P < 0.001)。当在较小数据集(N < 2000张图像)上训练时,RETFound模型具有性能优势,未裁剪图像的RETFound模型在外部数据上表现最佳(AUC - ROC比较P < 0.001)。裁剪图像的RETFound模型在不同种族群体中表现一致(P = 0.20),而其他模型则不然(P < 0.04);性能在年龄或性别上没有差异。两种架构的显著性映射均始终包含视神经。

结论

虽然RETFound和VGG - 19模型在可转诊性青光眼分类方面都表现良好,但在训练数据有限且预期存在域转移时,基础模型可能更可取。无论采用何种架构,使用裁剪到视神经区域的图像训练模型均可提高性能,但可能会降低模型的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c304/12393662/517d3dcc207d/nihpp-2025.08.21.25334170v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验