Suppr超能文献

使用RETFound在视网膜光学相干断层扫描(OCT)上检测疾病特征

Detection of Disease Features on Retinal OCT Scans Using RETFound.

作者信息

Du Katherine, Nair Atharv Ramesh, Shah Stavan, Gadari Adarsh, Vupparaboina Sharat Chandra, Bollepalli Sandeep Chandra, Sutharahan Shan, Sahel José-Alain, Jana Soumya, Chhablani Jay, Vupparaboina Kiran Kumar

机构信息

Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA.

Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India.

出版信息

Bioengineering (Basel). 2024 Nov 25;11(12):1186. doi: 10.3390/bioengineering11121186.

Abstract

Eye diseases such as age-related macular degeneration (AMD) are major causes of irreversible vision loss. Early and accurate detection of these diseases is essential for effective management. Optical coherence tomography (OCT) imaging provides clinicians with in vivo, cross-sectional views of the retina, enabling the identification of key pathological features. However, manual interpretation of OCT scans is labor-intensive and prone to variability, often leading to diagnostic inconsistencies. To address this, we leveraged the RETFound model, a foundation model pretrained on 1.6 million unlabeled retinal OCT images, to automate the classification of key disease signatures on OCT. We finetuned RETFound and compared its performance with the widely used ResNet-50 model, using single-task and multitask modes. The dataset included 1770 labeled B-scans with various disease features, including subretinal fluid (SRF), intraretinal fluid (IRF), drusen, and pigment epithelial detachment (PED). The performance was evaluated using accuracy and AUC-ROC values, which ranged across models from 0.75 to 0.77 and 0.75 to 0.80, respectively. RETFound models display comparable specificity and sensitivity to ResNet-50 models overall, making it also a promising tool for retinal disease diagnosis. These findings suggest that RETFound may offer improved diagnostic accuracy and interpretability for specific tasks, potentially aiding clinicians in more efficient and reliable OCT image analysis.

摘要

年龄相关性黄斑变性(AMD)等眼部疾病是不可逆视力丧失的主要原因。早期准确检测这些疾病对于有效管理至关重要。光学相干断层扫描(OCT)成像为临床医生提供视网膜的体内横截面视图,有助于识别关键病理特征。然而,手动解读OCT扫描劳动强度大且容易出现变异性,常常导致诊断不一致。为解决这一问题,我们利用RETFound模型(一种在160万张未标记视网膜OCT图像上预训练的基础模型)来自动对OCT上的关键疾病特征进行分类。我们对RETFound进行了微调,并将其性能与广泛使用的ResNet-50模型在单任务和多任务模式下进行比较。数据集包括1770张带有各种疾病特征的标记B扫描图像,这些特征包括视网膜下液(SRF)、视网膜内液(IRF)、玻璃膜疣和色素上皮脱离(PED)。使用准确率和AUC-ROC值评估性能,各模型的准确率和AUC-ROC值分别在0.75至0.77和0.75至0.80之间。总体而言,RETFound模型与ResNet-50模型表现出相当的特异性和敏感性,使其也成为视网膜疾病诊断的一个有前景的工具。这些发现表明,RETFound可能为特定任务提供更高的诊断准确性和可解释性,有望帮助临床医生更高效、可靠地进行OCT图像分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7204/11672910/b779feee693e/bioengineering-11-01186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验