Suppr超能文献

深度体液分析结合可解释的机器学习揭示了血吸虫病的诊断标志物和病理生理学。

Deep humoral profiling coupled to interpretable machine learning unveils diagnostic markers and pathophysiology of schistosomiasis.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30309, USA.

Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.

出版信息

Sci Transl Med. 2024 Sep 18;16(765):eadk7832. doi: 10.1126/scitranslmed.adk7832.

Abstract

Schistosomiasis, a highly prevalent parasitic disease, affects more than 200 million people worldwide. Current diagnostics based on parasite egg detection in stool detect infection only at a late stage, and current antibody-based tests cannot distinguish past from current infection. Here, we developed and used a multiplexed antibody profiling platform to obtain a comprehensive repertoire of antihelminth humoral profiles including isotype, subclass, Fc receptor (FcR) binding, and glycosylation profiles of antigen-specific antibodies. Using Essential Regression (ER) and SLIDE, interpretable machine learning methods, we identified latent factors (context-specific groups) that move beyond biomarkers and provide insights into the pathophysiology of different stages of schistosome infection. By comparing profiles of infected and healthy individuals, we identified modules with unique humoral signatures of active disease, including hallmark signatures of parasitic infection such as elevated immunoglobulin G4 (IgG4). However, we also captured previously uncharacterized humoral responses including elevated FcR binding and specific antibody glycoforms in patients with active infection, helping distinguish them from those without active infection but with equivalent antibody titers. This signature was validated in an independent cohort. Our approach also uncovered two distinct endotypes, nonpatent infection and prior infection, in those who were not actively infected. Higher amounts of IgG1 and FcR1/FcR3A binding were also found to be likely protective of the transition from nonpatent to active infection. Overall, we unveiled markers for antibody-based diagnostics and latent factors underlying the pathogenesis of schistosome infection. Our results suggest that selective antigen targeting could be useful in early detection, thus controlling infection severity.

摘要

血吸虫病是一种高度流行的寄生虫病,影响着全球超过 2 亿人。目前基于粪便中寄生虫卵检测的诊断方法只能在感染后期检测到感染,而现有的基于抗体的检测方法无法区分过去和现在的感染。在这里,我们开发并使用了一种多重抗体分析平台,以获得包括抗体同种型、亚类、Fc 受体(FcR)结合和抗原特异性抗体糖基化谱在内的全面抗寄生虫体液反应谱。使用基本回归(ER)和 SLIDE 等可解释的机器学习方法,我们确定了潜在的因素(特定于上下文的组),这些因素超越了生物标志物,并提供了对不同血吸虫感染阶段病理生理学的深入了解。通过比较感染者和健康者的特征谱,我们确定了具有活动性疾病独特体液特征的模块,包括寄生虫感染的标志性特征,如免疫球蛋白 G4(IgG4)水平升高。然而,我们还捕获了以前未被表征的体液反应,包括在活动性感染患者中 FcR 结合和特定抗体糖型的升高,这有助于将他们与没有活动性感染但具有同等抗体滴度的患者区分开来。这一特征在一个独立的队列中得到了验证。我们的方法还揭示了那些未处于活动性感染的患者中两种不同的内型,即非专利感染和既往感染。较高水平的 IgG1 和 FcR1/FcR3A 结合也被发现可能有助于预防非专利感染向活动性感染的转变。总的来说,我们揭示了用于基于抗体的诊断的标志物以及血吸虫感染发病机制的潜在因素。我们的研究结果表明,选择性抗原靶向可能有助于早期检测,从而控制感染的严重程度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验