Rosen Aaron Bi, Sanyal Anwesha, Hutchins Theresa, Werner Giffin, Berkowitz Jacob S, Tabib Tracy, Lafyatis Robert, Jacobe Heidi, Das Jishnu, Torok Kathryn S
Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology.
Department of Pediatrics; and.
JCI Insight. 2025 Apr 8;10(7):e185758. doi: 10.1172/jci.insight.185758.
Using transcriptomic profiling at single-cell resolution, we investigated cell-intrinsic and cell-extrinsic signatures associated with pathogenesis and inflammation-driven fibrosis in both adult and pediatric patients with localized scleroderma (LS). We performed single-cell RNA-Seq on adult and pediatric patients with LS and healthy controls. We then analyzed the single-cell RNA-Seq data using an interpretable factor analysis machine learning framework, significant latent factor interaction discovery and exploration (SLIDE), which moves beyond predictive biomarkers to infer latent factors underlying LS pathophysiology. SLIDE is a recently developed latent factor regression-based framework that comes with rigorous statistical guarantees regarding identifiability of the latent factors, corresponding inference, and FDR control. We found distinct differences in the characteristics and complexity in the molecular signatures between adult and pediatric LS. SLIDE identified cell type-specific determinants of LS associated with age and severity and revealed insights into signaling mechanisms shared between LS and systemic sclerosis (SSc), as well as differences in onset of the disease in the pediatric compared with adult population. Our analyses recapitulate known drivers of LS pathology and identify cellular signaling modules that stratify LS subtypes and define a shared signaling axis with SSc.
我们使用单细胞分辨率的转录组分析,研究了成年和儿童局限性硬皮病(LS)患者中与发病机制和炎症驱动的纤维化相关的细胞内在和细胞外在特征。我们对成年和儿童LS患者以及健康对照进行了单细胞RNA测序。然后,我们使用一个可解释的因子分析机器学习框架——显著潜在因子相互作用发现与探索(SLIDE)来分析单细胞RNA测序数据,该框架超越了预测性生物标志物,以推断LS病理生理学背后的潜在因子。SLIDE是一个最近开发的基于潜在因子回归的框架,在潜在因子的可识别性、相应推断和错误发现率控制方面有严格的统计保证。我们发现成年和儿童LS在分子特征的特点和复杂性上存在明显差异。SLIDE确定了与年龄和严重程度相关的LS细胞类型特异性决定因素,并揭示了LS与系统性硬化症(SSc)之间共享的信号传导机制,以及与成年人群相比儿童疾病发病的差异。我们的分析概括了已知的LS病理驱动因素,并确定了区分LS亚型并定义与SSc共享信号轴的细胞信号模块。