Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
Amgen Discovery Research, Amgen Inc., South San Francisco, CA, USA.
Nature. 2024 Nov;635(8038):423-433. doi: 10.1038/s41586-024-08008-5. Epub 2024 Oct 23.
Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction. However, the molecular mechanisms driving immune-fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis. Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand-receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2 monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function.
炎症和组织纤维化并存,并存在因果关系,导致器官功能障碍。然而,驱动人类心脏疾病中免疫成纤维细胞通讯的分子机制仍未被探索,目前也没有批准的治疗方法可以直接靶向心脏纤维化。在这里,我们对 45 名健康供体、急性梗死和慢性衰竭的人类心脏进行了多组学单细胞基因表达、表位作图和染色质可及性分析。我们鉴定出一种与疾病相关的成纤维细胞轨迹,该轨迹分化为不同的群体,类似于肌成纤维细胞和成纤维细胞激活蛋白(FAP)和骨桥蛋白(POSTN)表达的基质成纤维细胞。体内 FAP 成纤维细胞的遗传谱系追踪显示,它们有助于 POSTN 谱系,但不有助于肌成纤维细胞谱系。我们评估了实验系统模拟心脏成纤维细胞的适用性,并证明三种不同的体内心脏损伤小鼠模型优于培养的人心脏和成纤维细胞,能够重现人类疾病表型。配体-受体分析和空间转录组学预测,白细胞介素 1β(IL-1β)信号介导的 C-C 趋化因子受体 2(CCR2)巨噬细胞和成纤维细胞之间的相互作用,驱动 FAP/POSTN 成纤维细胞在空间上定义的龛位中出现。在体内,我们删除了成纤维细胞上的 IL-1 受体、CCR2 单核细胞和巨噬细胞上的 IL-1β 配体,并使用单克隆抗体抑制 IL-1β 信号,结果显示 FAP/POSTN 成纤维细胞减少,心肌纤维化减少,心脏功能改善。这些发现突出了靶向炎症治疗组织纤维化和保护器官功能的更广泛治疗潜力。