Suppr超能文献

野外环境下机器人的可用性:弥合复杂林业作业中不同用户群体的可达性差距。

Robot usability in the wild: bridging accessibility gaps for diverse user groups in complex forestry operations.

作者信息

Ehrlich-Sommer Florian, Hörl Bernhard, Gollob Christoph, Nothdurft Arne, Stampfer Karl, Holzinger Andreas

机构信息

Human-Centered AI Lab, Institute of Forest Engineering, Department of Ecosystem Management, Climate and Biodiversity, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.

Institute of Forest Growth, Department of Ecosystem Management, Climate and Biodiversity, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.

出版信息

Univers Access Inf Soc. 2025;24(3):2867-2887. doi: 10.1007/s10209-025-01234-2. Epub 2025 Jun 13.

Abstract

This study evaluated the usability and effectiveness of robotic platforms working together with foresters in the wild on forest inventory tasks using LiDAR scanning. Emphasis was on the Universal Access principle, ensuring that robotic solutions are not only effective but also environmentally responsible and accessible for diverse users. Three robotic platforms were tested: Boston Dynamics Spot, AgileX Scout, and Bunker Mini. Spot's quadrupedal locomotion struggled in dense undergrowth, leading to frequent mobility failures and a System Usability Scale (SUS) score of 78 ± 10. Its short, battery life and complex recovery processes further limited its suitability for forest operations without substantial modifications. In contrast, the wheeled AgileX Scout and tracked Bunker Mini demonstrated superior usability, each achieving a high SUS score of 88 ± 5. However, environmental impact varied: Scout's wheeled design caused minimal disturbance, whereas Bunker Mini's tracks occasionally damaged young vegetation, highlighting the importance of gentle interaction with natural ecosystems in robotic forestry. All platforms enhanced worker safety, reduced physical effort, and improved LiDAR workflows by eliminating the need for human presence during scans. Additionally, the study engaged forest engineering students, equipping them with hands-on experience in emerging robotic technologies and fostering discussions on their responsible integration into forestry practices. This study lays a crucial foundation for the integration of Artificial Intelligence (AI) into forest robotics, enabling future advancements in autonomous perception, decision-making, and adaptive navigation. By systematically evaluating robotic platforms in real-world forest environments, this research provides valuable empirical data that will inform AI-driven enhancements, such as machine learning-based terrain adaptation, intelligent path planning, and autonomous fault recovery. Furthermore, the study holds high value for the international research community, serving as a benchmark for future developments in forestry robotics and AI applications. Moving forward, future research will build on these findings to explore adaptive remote operation, AI-powered terrain-aware navigation, and sustainable deployment strategies, ensuring that robotic solutions enhance both operational efficiency and ecological responsibility in forest management worldwide.

摘要

本研究评估了机器人平台与林业工作者在野外协同进行森林资源清查任务(使用激光雷达扫描)的可用性和有效性。重点在于通用访问原则,确保机器人解决方案不仅有效,而且对环境负责且能为不同用户所用。测试了三个机器人平台:波士顿动力公司的Spot、灵动创想的Scout和邦克迷你机器人。Spot的四足运动在茂密的下层植被中遇到困难,导致频繁出现移动故障,系统可用性量表(SUS)得分为78±10。其较短的电池续航时间和复杂的恢复过程进一步限制了其在未经大量改装的情况下用于森林作业的适用性。相比之下,轮式的灵动创想Scout和履带式的邦克迷你机器人表现出卓越的可用性,各自获得了88±5的高分。然而,环境影响有所不同:Scout的轮式设计造成的干扰最小,而邦克迷你机器人的履带偶尔会损坏幼嫩植被,这凸显了在机器人林业中与自然生态系统进行温和互动的重要性。所有平台都提高了工人的安全性,减少了体力消耗,并通过在扫描过程中无需人工在场而改进了激光雷达工作流程。此外,该研究让森林工程专业的学生参与其中,使他们获得了新兴机器人技术的实践经验,并促进了关于将这些技术负责任地融入林业实践的讨论。本研究为将人工智能(AI)集成到森林机器人技术中奠定了关键基础,推动了自主感知、决策和自适应导航方面的未来进展。通过在现实世界的森林环境中系统地评估机器人平台,本研究提供了有价值的实证数据,将为基于人工智能的改进提供参考,如基于机器学习的地形适应、智能路径规划和自主故障恢复。此外,该研究对国际研究界具有很高的价值,可作为林业机器人技术和人工智能应用未来发展的基准。展望未来,未来的研究将基于这些发现,探索自适应远程操作、人工智能驱动的地形感知导航和可持续部署策略,确保机器人解决方案提高全球森林管理中的运营效率和生态责任感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验