Suppr超能文献

组织生成器:一种用于从分组单细胞RNA图谱标记组织的神经网络。

TissueFormer: a neural network for labeling tissue from grouped single-cell RNA profiles.

作者信息

Benjamin Ari S, Zador Anthony

出版信息

bioRxiv. 2025 Aug 19:2025.08.17.670735. doi: 10.1101/2025.08.17.670735.

Abstract

Single-cell RNA sequencing technologies have enabled unprecedented insights into gene expression and are poised to transform clinical diagnostics. At present, most computational approaches for interpreting single-cell data operate at the level of individual cells, predicting labels or properties based on isolated transcriptomic profiles. This approach overlooks a key class of signals: the composition of cells within a sample or defined population. Such signals are often critical for inferring tissue identity, disease state, or other sample-level phenotypes. To address this limitation, we introduce TissueFormer, a Transformer-based neural network that analyzes groups of single-cell RNA profiles to infer population-level labels while retaining single-cell resolution. Applied to predict the cortical area of groups of cells sampled from spatial transcriptomic data from mouse brains, TissueFormer outperformed both single-cell foundation models and machine learning methods applied to pseudobulk and cell type composition. This higher performance enables the automated construction of high-resolution brain region maps in individual animals directly from spatial transcriptomic data. More broadly, TissueFormer provides a framework for predicting any population-level phenotypes which are influenced by cellular diversity and tissue-level organization.

摘要

单细胞RNA测序技术使人们对基因表达有了前所未有的深入了解,并有望改变临床诊断。目前,大多数用于解释单细胞数据的计算方法都是在单个细胞层面上运行的,根据孤立的转录组图谱预测标签或属性。这种方法忽略了一类关键信号:样本或特定群体内细胞的组成。此类信号对于推断组织身份、疾病状态或其他样本层面的表型通常至关重要。为解决这一局限性,我们引入了TissueFormer,这是一种基于Transformer的神经网络,它分析单细胞RNA图谱组以推断群体层面的标签,同时保留单细胞分辨率。应用于从小鼠大脑的空间转录组数据中采样的细胞组的皮质区域预测时,TissueFormer的表现优于单细胞基础模型以及应用于伪批量和细胞类型组成的机器学习方法。这种更高的性能使得能够直接从空间转录组数据自动构建个体动物的高分辨率脑区图谱。更广泛地说,TissueFormer提供了一个框架,用于预测任何受细胞多样性和组织层面组织影响的群体层面的表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d0a/12393424/1e25052d846d/nihpp-2025.08.17.670735v1-f0001.jpg

相似文献

本文引用的文献

2
Mouse-Geneformer: A deep learning model for mouse single-cell transcriptome and its cross-species utility.
PLoS Genet. 2025 Mar 19;21(3):e1011420. doi: 10.1371/journal.pgen.1011420. eCollection 2025 Mar.
3
Mapping the topography of spatial gene expression with interpretable deep learning.
Nat Methods. 2025 Feb;22(2):298-309. doi: 10.1038/s41592-024-02503-3. Epub 2025 Jan 23.
5
Search and match across spatial omics samples at single-cell resolution.
Nat Methods. 2024 Oct;21(10):1818-1829. doi: 10.1038/s41592-024-02410-7. Epub 2024 Sep 18.
6
Transformers in single-cell omics: a review and new perspectives.
Nat Methods. 2024 Aug;21(8):1430-1443. doi: 10.1038/s41592-024-02353-z. Epub 2024 Aug 9.
7
Whole-cortex in situ sequencing reveals input-dependent area identity.
Nature. 2024 Apr 24. doi: 10.1038/s41586-024-07221-6.
8
BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis.
Nat Genet. 2024 Mar;56(3):431-441. doi: 10.1038/s41588-024-01664-3. Epub 2024 Feb 27.
9
scGPT: toward building a foundation model for single-cell multi-omics using generative AI.
Nat Methods. 2024 Aug;21(8):1470-1480. doi: 10.1038/s41592-024-02201-0. Epub 2024 Feb 26.
10
Phenotype prediction from single-cell RNA-seq data using attention-based neural networks.
Bioinformatics. 2024 Feb 1;40(2). doi: 10.1093/bioinformatics/btae067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验