Suppr超能文献

在单细胞分辨率下搜索和匹配空间组学样本。

Search and match across spatial omics samples at single-cell resolution.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Methods. 2024 Oct;21(10):1818-1829. doi: 10.1038/s41592-024-02410-7. Epub 2024 Sep 18.

Abstract

Spatial omics technologies characterize tissue molecular properties with spatial information, but integrating and comparing spatial data across different technologies and modalities is challenging. A comparative analysis tool that can search, match and visualize both similarities and differences of molecular features in space across multiple samples is lacking. To address this, we introduce CAST (cross-sample alignment of spatial omics), a deep graph neural network-based method enabling spatial-to-spatial searching and matching at the single-cell level. CAST aligns tissues based on intrinsic similarities of spatial molecular features and reconstructs spatially resolved single-cell multi-omic profiles. CAST further allows spatially resolved differential analysis (∆Analysis) to pinpoint and visualize disease-associated molecular pathways and cell-cell interactions and single-cell relative translational efficiency profiling to reveal variations in translational control across cell types and regions. CAST serves as an integrative framework for seamless single-cell spatial data searching and matching across technologies, modalities and sample conditions.

摘要

空间组学技术可利用空间信息描述组织分子特性,但整合和比较不同技术和模式的空间数据具有挑战性。目前缺乏一种可以在多个样本中搜索、匹配和可视化分子特征在空间上的相似性和差异性的比较分析工具。为了解决这个问题,我们引入了 CAST(空间组学跨样本对齐),这是一种基于深度图神经网络的方法,能够在单细胞水平上进行空间到空间的搜索和匹配。CAST 基于空间分子特征的内在相似性对组织进行对齐,并重建空间分辨的单细胞多组学图谱。CAST 还允许进行空间分辨差异分析(∆Analysis),以精确定位和可视化与疾病相关的分子途径和细胞-细胞相互作用,并进行单细胞相对翻译效率分析,以揭示跨细胞类型和区域的翻译控制变化。CAST 是一个集成框架,可实现跨技术、模式和样本条件的无缝单细胞空间数据搜索和匹配。

相似文献

1
Search and match across spatial omics samples at single-cell resolution.在单细胞分辨率下搜索和匹配空间组学样本。
Nat Methods. 2024 Oct;21(10):1818-1829. doi: 10.1038/s41592-024-02410-7. Epub 2024 Sep 18.
3
Deciphering spatial domains from spatial multi-omics with SpatialGlue.利用 SpatialGlue 从空间多组学中破译空间域。
Nat Methods. 2024 Sep;21(9):1658-1667. doi: 10.1038/s41592-024-02316-4. Epub 2024 Jun 21.

引用本文的文献

本文引用的文献

1
The molecular cytoarchitecture of the adult mouse brain.成年鼠脑的分子细胞构筑。
Nature. 2023 Dec;624(7991):333-342. doi: 10.1038/s41586-023-06818-7. Epub 2023 Dec 13.
4
Alignment of spatial genomics data using deep Gaussian processes.使用深度高斯过程对齐空间基因组学数据。
Nat Methods. 2023 Sep;20(9):1379-1387. doi: 10.1038/s41592-023-01972-2. Epub 2023 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验