Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Methods. 2024 Oct;21(10):1818-1829. doi: 10.1038/s41592-024-02410-7. Epub 2024 Sep 18.
Spatial omics technologies characterize tissue molecular properties with spatial information, but integrating and comparing spatial data across different technologies and modalities is challenging. A comparative analysis tool that can search, match and visualize both similarities and differences of molecular features in space across multiple samples is lacking. To address this, we introduce CAST (cross-sample alignment of spatial omics), a deep graph neural network-based method enabling spatial-to-spatial searching and matching at the single-cell level. CAST aligns tissues based on intrinsic similarities of spatial molecular features and reconstructs spatially resolved single-cell multi-omic profiles. CAST further allows spatially resolved differential analysis (∆Analysis) to pinpoint and visualize disease-associated molecular pathways and cell-cell interactions and single-cell relative translational efficiency profiling to reveal variations in translational control across cell types and regions. CAST serves as an integrative framework for seamless single-cell spatial data searching and matching across technologies, modalities and sample conditions.
空间组学技术可利用空间信息描述组织分子特性,但整合和比较不同技术和模式的空间数据具有挑战性。目前缺乏一种可以在多个样本中搜索、匹配和可视化分子特征在空间上的相似性和差异性的比较分析工具。为了解决这个问题,我们引入了 CAST(空间组学跨样本对齐),这是一种基于深度图神经网络的方法,能够在单细胞水平上进行空间到空间的搜索和匹配。CAST 基于空间分子特征的内在相似性对组织进行对齐,并重建空间分辨的单细胞多组学图谱。CAST 还允许进行空间分辨差异分析(∆Analysis),以精确定位和可视化与疾病相关的分子途径和细胞-细胞相互作用,并进行单细胞相对翻译效率分析,以揭示跨细胞类型和区域的翻译控制变化。CAST 是一个集成框架,可实现跨技术、模式和样本条件的无缝单细胞空间数据搜索和匹配。