Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA.
Department of Computer Science, Boise State University, Boise, ID, USA.
Nat Commun. 2021 Apr 22;12(1):2371. doi: 10.1038/s41467-021-22277-y.
DNA is a compelling alternative to non-volatile information storage technologies due to its information density, stability, and energy efficiency. Previous studies have used artificially synthesized DNA to store data and automated next-generation sequencing to read it back. Here, we report digital Nucleic Acid Memory (dNAM) for applications that require a limited amount of data to have high information density, redundancy, and copy number. In dNAM, data is encoded by selecting combinations of single-stranded DNA with (1) or without (0) docking-site domains. When self-assembled with scaffold DNA, staple strands form DNA origami breadboards. Information encoded into the breadboards is read by monitoring the binding of fluorescent imager probes using DNA-PAINT super-resolution microscopy. To enhance data retention, a multi-layer error correction scheme that combines fountain and bi-level parity codes is used. As a prototype, fifteen origami encoded with 'Data is in our DNA!\n' are analyzed. Each origami encodes unique data-droplet, index, orientation, and error-correction information. The error-correction algorithms fully recover the message when individual docking sites, or entire origami, are missing. Unlike other approaches to DNA-based data storage, reading dNAM does not require sequencing. As such, it offers an additional path to explore the advantages and disadvantages of DNA as an emerging memory material.
由于其信息密度、稳定性和能量效率,DNA 是一种很有吸引力的非易失性信息存储技术的替代品。以前的研究使用人工合成的 DNA 来存储数据,并使用自动化的下一代测序技术将其读取回来。在这里,我们报告了数字核酸存储(dNAM),用于需要具有高信息密度、冗余度和拷贝数的有限数据量的应用。在 dNAM 中,数据通过选择具有(1)或不具有(0)对接位点域的单链 DNA 的组合进行编码。当与支架 DNA 自组装时,订书钉链形成 DNA 折纸面包板。通过使用 DNA-PAINT 超分辨率显微镜监测荧光成像探针的结合情况来读取编码到面包板中的信息。为了增强数据保留能力,使用了结合喷泉码和双层奇偶校验码的多层纠错方案。作为原型,分析了十五个编码有“数据就在我们的 DNA 中!”的折纸。每个折纸都对独特的数据滴、索引、方向和纠错信息进行编码。当单个对接位点或整个折纸丢失时,纠错算法可以完全恢复消息。与其他基于 DNA 的数据存储方法不同,读取 dNAM 不需要测序。因此,它为探索 DNA 作为一种新兴存储材料的优缺点提供了另一种途径。