Suppr超能文献

迈向个性化脑深部刺激:基于立体脑电图的无偏神经刺激靶点识别工作流程。

Towards individualized deep brain stimulation: A stereoencephalography-based workflow for unbiased neurostimulation target identification.

作者信息

Saal Jeremy, Kadlec Kelly, Allawala Anusha B, Johnston Lucille, Leriche Ryan B, Vatsyayan Ritwik, Han Yiyuan, Kist Audrey, Di Ianni Tommaso, Dawes Heather E, Chang Edward F, Lee A Moses, Krystal Andrew D, Moussawi Khaled, Shirvalkar Prasad, Sellers Kristin K

出版信息

bioRxiv. 2025 Aug 22:2025.04.22.649607. doi: 10.1101/2025.04.22.649607.

Abstract

OBJECTIVES

Deep brain stimulation (DBS) is increasingly being used to treat a variety of neuropsychiatric conditions, many of which exhibit idiosyncratic symptom presentations and neural correlates across individuals. Thus, we have utilized inpatient stereoelectroencephalography (sEEG) to identify personalized therapeutic stimulation sites for chronic implantation of DBS. Informed by our experience, we have developed a statistics-driven framework for unbiased stimulation testing to identify therapeutic targets.

MATERIALS AND METHODS

Fourteen participants (major depressive disorder = 6, chronic pain = 6, obsessive-compulsive disorder = 2) underwent inpatient testing using sEEG and symptom monitoring to identify personalized stimulation targets for subsequent DBS implantation. We present a structured approach to this sEEG testing, integrating a Stimulation Testing Decision Tree with power analysis and effect size considerations to inform adequately powered results to detect therapeutic stimulation sites with statistical rigor.

RESULTS

Effect sizes (Cohen's d) of stimulation-induced symptom score changes ranged from -1.59 to +2.59. The standard deviation of sham trial responses was strongly correlated with the standard deviation of stimulation responses (r = 0.86, p < 0.001), and thus could be used to estimate the variability of stimulation responses for power analysis calculations. We show that 12-15 sham trials were needed to robustly estimate sham variability. Power analysis (using a paired-t test) showed that for effect sizes ≥ 1.1, approximately 10 trials should be used per stimulation site for sufficiently powered results.

CONCLUSIONS

The workflow presented is adaptable to any indication and is specifically designed to overcome key challenges experienced during stimulation site testing. Through incorporating sham trials, effect size calculations, and tolerability testing, the described approach can be used to identify personalized, unbiased, and clinically efficacious stimulation sites.

摘要

目的

脑深部电刺激(DBS)越来越多地用于治疗各种神经精神疾病,其中许多疾病在个体间表现出独特的症状表现和神经关联。因此,我们利用住院患者立体脑电图(sEEG)来确定用于DBS慢性植入的个性化治疗刺激部位。基于我们的经验,我们开发了一个由统计驱动的框架,用于无偏刺激测试以确定治疗靶点。

材料与方法

14名参与者(重度抑郁症 = 6例,慢性疼痛 = 6例,强迫症 = 2例)接受了住院测试,使用sEEG和症状监测来确定后续DBS植入的个性化刺激靶点。我们提出了一种针对该sEEG测试的结构化方法,将刺激测试决策树与功效分析和效应量考虑相结合,以得出有充分效力的结果,从而严格地从统计学角度检测治疗性刺激部位。

结果

刺激引起的症状评分变化的效应量(Cohen's d)范围为 -1.59至 +2.59。假刺激试验反应的标准差与刺激反应的标准差高度相关(r = 0.86,p < 0.001),因此可用于估计刺激反应的变异性以进行功效分析计算。我们表明,需要12 - 15次假刺激试验才能可靠地估计假刺激变异性。功效分析(使用配对t检验)表明,对于效应量≥

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验