Poblet Martin, Bertelsen Christian Vinther, Alonso-Tomás David, Singh Rahul, López-Aymerich Elena, Goldschmidt Jens, Schmitt Katrin, Dimaki Maria, Svendsen Winnie E, Romano-Rodríguez Albert, Navarro-Urrios Daniel
Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
Nanophotonics. 2025 Jul 28;14(17):2953-2961. doi: 10.1515/nanoph-2025-0232. eCollection 2025 Aug.
One-dimensional photonic crystal (1D-PhC) pillar cavities allow transducing mechanical pillar vibrations to the optical domain, thereby relaxing the requirements typically associated with mechanical motion detection. In this study, we integrate these geometries into a silicon-on-insulator photonics platform and explore their optical and mechanical properties. The 1D-PhC structures consist of a linear array of high aspect ratio nanopillars with nanometer-sized diameters, designed to enhance the interaction between transverse-magnetic (TM) polarized optical fields and mechanical vibrations and to minimize optical leaking to the substrate. Integrated waveguides are engineered to support TM-like modes, which enable optimized coupling to the 1D-PhC optical cavity modes via evanescent wave interaction. Finite element method simulations and experimental analyses reveal that these cavities achieve relatively high optical quality factors ( ∼ 4 × 10). In addition, both simulated and experimentally measured mechanical vibrational frequencies show large optomechanical coupling rates exceeding 1 MHz for the fundamental cantilever-like modes. By tuning the separation between the 1D-PhC and the waveguide, we achieve optimal optical coupling conditions that enable the transduction of thermally activated mechanical modes across a broad frequency range - from tens to several hundreds of MHz. This enhanced accessibility and efficiency in mechanical motion transduction significantly strengthens the viability of established microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) technologies based on nanowires, nanorods, and related structures, particularly in applications such as force sensing and biosensing.
一维光子晶体(1D-PhC)柱形腔能够将机械柱振动转换到光域,从而放宽了通常与机械运动检测相关的要求。在本研究中,我们将这些几何结构集成到绝缘体上硅光子学平台中,并探索它们的光学和机械特性。1D-PhC结构由具有纳米级直径的高纵横比纳米柱的线性阵列组成,旨在增强横向磁(TM)偏振光场与机械振动之间的相互作用,并使光向衬底的泄漏最小化。集成波导经过设计以支持类TM模式,通过倏逝波相互作用实现与1D-PhC光学腔模式的优化耦合。有限元方法模拟和实验分析表明,这些腔实现了相对较高的光学品质因数(约4×10)。此外,模拟和实验测量的机械振动频率均显示,对于基本的类悬臂梁模式,光机械耦合率超过1MHz。通过调整1D-PhC与波导之间的间距,我们实现了最佳光学耦合条件,能够在从几十到几百MHz的宽频率范围内转换热激活的机械模式。这种在机械运动转换方面增强的可及性和效率显著增强了基于纳米线、纳米棒及相关结构的成熟微机电系统(MEMS)和纳米机电系统(NEMS)技术的可行性,特别是在力传感和生物传感等应用中。