Jaramillo-Fernandez Juliana, Poblet Martin, Alonso-Tomás David, Bertelsen Christian Vinther, López-Aymerich Elena, Arenas-Ortega Daniel, Svendsen Winnie Edith, Capuj Néstor, Romano-Rodríguez Albert, Navarro-Urrios Daniel
Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028 Barcelona, Spain.
Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
ACS Nano. 2024 Sep 3;18(35):24550-24557. doi: 10.1021/acsnano.4c09014. Epub 2024 Aug 21.
Nanomechanical resonators can serve as ultrasensitive, miniaturized force probes. While vertical structures such as nanopillars are ideal for this purpose, transducing their motion is challenging. Pillar-based photonic crystals (PhCs) offer a potential solution by integrating optical transduction within the pillars. However, achieving high-quality PhCs is hindered by inefficient vertical light confinement. Here, we present a full-silicon photonic crystal cavity based on nanopillars as a platform for applications in force sensing and biosensing areas. Its unit cell consists of a silicon pillar with a larger diameter at its top portion than at the bottom, which allows vertical light confinement and an energy band gap in the near-infrared range for transverse-magnetic polarization. We experimentally demonstrate optical cavities with factors exceeding 10, constructed by inserting a defect within a periodic arrangement of this type of pillars. Each nanopillar naturally behaves as a nanomechanical cantilever, making the fabricated geometries excellent optomechanical (OM) photonic crystal cavities in which the mechanical motion of each nanopillar composing the cavity can be optically transduced. These geometries display enhanced mechanical properties, cost-effectiveness, integration possibilities, and scalability. They also present an alternative in front of the widely used suspended Si beam OM cavities made on silicon-on-insulator substrates.
纳米机械谐振器可作为超灵敏的微型力探测器。虽然纳米柱等垂直结构非常适合此用途,但转换它们的运动具有挑战性。基于柱的光子晶体(PhC)通过在柱内集成光学转换提供了一种潜在的解决方案。然而,垂直光限制效率低下阻碍了高质量光子晶体的实现。在此,我们提出一种基于纳米柱的全硅光子晶体腔,作为力传感和生物传感领域应用的平台。其晶胞由顶部直径大于底部直径的硅柱组成,这允许垂直光限制以及横向磁极化在近红外范围内的能带隙。我们通过在这种类型柱的周期性排列中插入缺陷,实验证明了品质因数超过10的光学腔。每个纳米柱自然地表现为一个纳米机械悬臂,使得制造的几何结构成为优异的光机械(OM)光子晶体腔,其中构成腔的每个纳米柱的机械运动都可以进行光学转换。这些几何结构具有增强的机械性能、成本效益、集成可能性和可扩展性。它们还在基于绝缘体上硅衬底制造的广泛使用的悬浮硅梁光机械腔面前提供了一种替代方案。