Prashad Christopher D
Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3, Canada.
Infect Dis Model. 2025 May 21;10(4):1507-1532. doi: 10.1016/j.idm.2025.05.005. eCollection 2025 Dec.
We present an exploration of advanced stochastic simulation techniques for state-space models, with a specific focus on their applications in infectious disease modelling. Utilizing COVID-19 surveillance data from the province of Ontario, Canada, we employ Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods to detect structural changes and pre-dict future trends in case counts. Our approach begins with the application of a Kalman smoothing technique, integrated with MCMC for state sampling within local level and seasonal models, alongside Bayesian inference for non-linear dynamic regression models. We then assess the effectiveness of various priors, including normal, Student's t, Laplace, and horseshoe distributions, in capturing abrupt changes within the data using a Rao-Blackwellized par-ticle filter. Our findings highlight the superior performance of the horseshoe prior in identifying change points and adapting to complex data structures, offering valuable insights for real-time monitoring and forecasting in public health. This study emphasizes the efficacy of state-space models, particu-larly when enhanced with sophisticated prior distributions, in providing a nuanced understanding of infectious disease transmission.
我们展示了对状态空间模型的先进随机模拟技术的探索,特别关注其在传染病建模中的应用。利用来自加拿大安大略省的新冠疫情监测数据,我们采用马尔可夫链蒙特卡罗(MCMC)和序贯蒙特卡罗(SMC)方法来检测病例数的结构变化并预测未来趋势。我们的方法首先应用卡尔曼平滑技术,将其与MCMC相结合,用于局部水平和季节性模型中的状态采样,同时对非线性动态回归模型进行贝叶斯推断。然后,我们使用 Rao-Blackwellized 粒子滤波器评估各种先验分布(包括正态分布、学生t分布、拉普拉斯分布和马蹄形分布)在捕捉数据中的突变方面的有效性。我们的研究结果突出了马蹄形先验在识别变化点和适应复杂数据结构方面的卓越性能,为公共卫生领域的实时监测和预测提供了有价值的见解。这项研究强调了状态空间模型的有效性,特别是在通过复杂的先验分布进行增强时,能够对传染病传播提供细致入微的理解。