Suppr超能文献

使用状态空间SIR模型预测季节性流感

Forecasting seasonal influenza with a state-space SIR model.

作者信息

Osthus Dave, Hickmann Kyle S, Caragea Petruţa C, Higdon Dave, Del Valle Sara Y

机构信息

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Department of Statistics, Iowa State University, 2409 Snedecor Hall, Ames, Iowa 50011, USA.

出版信息

Ann Appl Stat. 2017 Mar;11(1):202-224. doi: 10.1214/16-AOAS1000. Epub 2017 Apr 8.

Abstract

Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics.

摘要

季节性流感是一个严重的公共卫生和社会问题,因为它会导致旷工、住院和死亡等后果。疾病控制与预防中心的流感样疾病网络掌握了流感的总体负担情况,该网络提供了有关当前发病率的宝贵信息。这些信息被用于为预防和应对工作提供决策支持。尽管有相对丰富的监测数据以及季节性流感的反复出现,但预测美国季节性流感的时间和强度仍然具有挑战性,因为疾病传播过程的形式不确定,疾病动态仅部分可观察到,而且公共卫生观察存在噪声。拟合一个由确定性数学模型(易感-感染-康复模型,即SIR模型)驱动的概率状态空间模型,是预测季节性流感同时考虑多种不确定性来源的一种有前景的方法。这项工作的一个重要发现是精心指定先验的重要性,因为结果严重依赖于先验的指定。我们有条件指定的先验使我们能够利用潜伏SIR初始条件与参数以及监测数据函数之间的已知关系。我们通过使用几个预测准确性指标进行预测比较,展示了我们的方法相对于其他方法的优势。

相似文献

1
Forecasting seasonal influenza with a state-space SIR model.
Ann Appl Stat. 2017 Mar;11(1):202-224. doi: 10.1214/16-AOAS1000. Epub 2017 Apr 8.
2
Forecasting the 2013-2014 influenza season using Wikipedia.
PLoS Comput Biol. 2015 May 14;11(5):e1004239. doi: 10.1371/journal.pcbi.1004239. eCollection 2015 May.
3
Forecasting Influenza Epidemics in Hong Kong.
PLoS Comput Biol. 2015 Jul 30;11(7):e1004383. doi: 10.1371/journal.pcbi.1004383. eCollection 2015 Jul.
6
Anatomy of a seasonal influenza epidemic forecast.
Commun Dis Intell (2018). 2019 Mar 15;43. doi: 10.33321/cdi.2019.43.7.
7
Comparison of combination methods to create calibrated ensemble forecasts for seasonal influenza in the U.S.
Stat Med. 2023 Nov 20;42(26):4696-4712. doi: 10.1002/sim.9884. Epub 2023 Aug 30.
9
Neural network models for influenza forecasting with associated uncertainty using Web search activity trends.
PLoS Comput Biol. 2023 Aug 28;19(8):e1011392. doi: 10.1371/journal.pcbi.1011392. eCollection 2023 Aug.
10
Collaborative efforts to forecast seasonal influenza in the United States, 2015-2016.
Sci Rep. 2019 Jan 24;9(1):683. doi: 10.1038/s41598-018-36361-9.

引用本文的文献

1
State-space modelling for infectious disease surveillance data: Stochastic simulation techniques and structural change detection.
Infect Dis Model. 2025 May 21;10(4):1507-1532. doi: 10.1016/j.idm.2025.05.005. eCollection 2025 Dec.
3
Deep learning architectures for influenza dynamics and treatment optimization: a comprehensive review.
Front Artif Intell. 2025 May 27;8:1521886. doi: 10.3389/frai.2025.1521886. eCollection 2025.
5
Causal inference concepts can guide research into the effects of climate on infectious diseases.
Nat Ecol Evol. 2025 Feb;9(2):349-363. doi: 10.1038/s41559-024-02594-3. Epub 2024 Nov 25.
6
Integrating information from historical data into mechanistic models for influenza forecasting.
PLoS Comput Biol. 2024 Oct 30;20(10):e1012523. doi: 10.1371/journal.pcbi.1012523. eCollection 2024 Oct.
8
REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY.
Ann Appl Stat. 2023 Sep;17(3):1801-1819. doi: 10.1214/22-aoas1671. Epub 2023 Sep 7.
9
ADDRESSING SELECTION BIAS AND MEASUREMENT ERROR IN COVID-19 CASE COUNT DATA USING AUXILIARY INFORMATION.
Ann Appl Stat. 2023 Dec;17(4):2903-2923. doi: 10.1214/23-aoas1744. Epub 2023 Oct 30.

本文引用的文献

1
Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model.
J Am Stat Assoc. 2012;107(500):1410-1426. doi: 10.1080/01621459.2012.713876. Epub 2012 Dec 21.
2
Forecasting the 2013-2014 influenza season using Wikipedia.
PLoS Comput Biol. 2015 May 14;11(5):e1004239. doi: 10.1371/journal.pcbi.1004239. eCollection 2015 May.
3
Inference of seasonal and pandemic influenza transmission dynamics.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2723-8. doi: 10.1073/pnas.1415012112. Epub 2015 Feb 17.
4
Global disease monitoring and forecasting with Wikipedia.
PLoS Comput Biol. 2014 Nov 13;10(11):e1003892. doi: 10.1371/journal.pcbi.1003892. eCollection 2014 Nov.
5
Influenza forecasting in human populations: a scoping review.
PLoS One. 2014 Apr 8;9(4):e94130. doi: 10.1371/journal.pone.0094130. eCollection 2014.
6
A systematic review of studies on forecasting the dynamics of influenza outbreaks.
Influenza Other Respir Viruses. 2014 May;8(3):309-16. doi: 10.1111/irv.12226. Epub 2013 Dec 23.
7
Real-time influenza forecasts during the 2012-2013 season.
Nat Commun. 2013;4:2837. doi: 10.1038/ncomms3837.
8
Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters.
PLoS Curr. 2013 Jan 28;5:ecurrents.flu.3679b56a3a5313dc7c043fb944c6f138. doi: 10.1371/currents.flu.3679b56a3a5313dc7c043fb944c6f138.
9
Forecasting peaks of seasonal influenza epidemics.
PLoS Curr. 2013 Jun 21;5:ecurrents.outbreaks.bb1e879a23137022ea79a8c508b030bc. doi: 10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc.
10
Forecasting seasonal outbreaks of influenza.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20425-30. doi: 10.1073/pnas.1208772109. Epub 2012 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验