Osthus Dave, Hickmann Kyle S, Caragea Petruţa C, Higdon Dave, Del Valle Sara Y
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Department of Statistics, Iowa State University, 2409 Snedecor Hall, Ames, Iowa 50011, USA.
Ann Appl Stat. 2017 Mar;11(1):202-224. doi: 10.1214/16-AOAS1000. Epub 2017 Apr 8.
Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics.
季节性流感是一个严重的公共卫生和社会问题,因为它会导致旷工、住院和死亡等后果。疾病控制与预防中心的流感样疾病网络掌握了流感的总体负担情况,该网络提供了有关当前发病率的宝贵信息。这些信息被用于为预防和应对工作提供决策支持。尽管有相对丰富的监测数据以及季节性流感的反复出现,但预测美国季节性流感的时间和强度仍然具有挑战性,因为疾病传播过程的形式不确定,疾病动态仅部分可观察到,而且公共卫生观察存在噪声。拟合一个由确定性数学模型(易感-感染-康复模型,即SIR模型)驱动的概率状态空间模型,是预测季节性流感同时考虑多种不确定性来源的一种有前景的方法。这项工作的一个重要发现是精心指定先验的重要性,因为结果严重依赖于先验的指定。我们有条件指定的先验使我们能够利用潜伏SIR初始条件与参数以及监测数据函数之间的已知关系。我们通过使用几个预测准确性指标进行预测比较,展示了我们的方法相对于其他方法的优势。