Suppr超能文献

用于医学图像分割的类别感知对抗变压器

Class-Aware Adversarial Transformers for Medical Image Segmentation.

作者信息

You Chenyu, Zhao Ruihan, Liu Fenglin, Dong Siyuan, Chinchali Sandeep, Topcu Ufuk, Staib Lawrence, Duncan James S

机构信息

Yale University.

UT Austin.

出版信息

Adv Neural Inf Process Syst. 2022 Dec;35:29582-29596.

Abstract

Transformers have made remarkable progress towards modeling long-range dependencies within the medical image analysis domain. However, current transformer-based models suffer from several disadvantages: (1) existing methods fail to capture the important features of the images due to the naive tokenization scheme; (2) the models suffer from information loss because they only consider single-scale feature representations; and (3) the segmentation label maps generated by the models are not accurate enough without considering rich semantic contexts and anatomical textures. In this work, we present CASTformer, a novel type of adversarial transformers, for 2D medical image segmentation. First, we take advantage of the pyramid structure to construct multi-scale representations and handle multi-scale variations. We then design a novel class-aware transformer module to better learn the discriminative regions of objects with semantic structures. Lastly, we utilize an adversarial training strategy that boosts segmentation accuracy and correspondingly allows a transformer-based discriminator to capture high-level semantically correlated contents and low-level anatomical features. Our experiments demonstrate that CASTformer dramatically outperforms previous state-of-the-art transformer-based approaches on three benchmarks, obtaining 2.54%-5.88% absolute improvements in Dice over previous models. Further qualitative experiments provide a more detailed picture of the model's inner workings, shed light on the challenges in improved transparency, and demonstrate that transfer learning can greatly improve performance and reduce the size of medical image datasets in training, making CASTformer a strong starting point for downstream medical image analysis tasks.

摘要

Transformer在医学图像分析领域对长距离依赖关系的建模方面取得了显著进展。然而,当前基于Transformer的模型存在几个缺点:(1)由于简单的tokenization方案,现有方法无法捕捉图像的重要特征;(2)模型存在信息损失,因为它们只考虑单尺度特征表示;(3)模型生成的分割标签图在没有考虑丰富语义上下文和解剖纹理的情况下不够准确。在这项工作中,我们提出了CASTformer,一种新型的对抗性Transformer,用于二维医学图像分割。首先,我们利用金字塔结构构建多尺度表示并处理多尺度变化。然后,我们设计了一个新颖的类感知Transformer模块,以更好地学习具有语义结构的对象的判别区域。最后,我们采用对抗训练策略,提高分割精度,并相应地允许基于Transformer的判别器捕捉高级语义相关内容和低级解剖特征。我们的实验表明,CASTformer在三个基准测试中显著优于以前基于Transformer的最先进方法,在Dice上比以前的模型获得了2.54%-5.88%的绝对提升。进一步的定性实验更详细地展示了模型的内部工作原理,揭示了提高透明度方面的挑战,并表明迁移学习可以大大提高性能并减少训练中医学图像数据集的大小,使CASTformer成为下游医学图像分析任务的一个强大起点。

相似文献

4
LM-Net: A light-weight and multi-scale network for medical image segmentation.LM-Net:用于医学图像分割的轻量级多尺度网络。
Comput Biol Med. 2024 Jan;168:107717. doi: 10.1016/j.compbiomed.2023.107717. Epub 2023 Nov 23.

引用本文的文献

本文引用的文献

2
Medical image registration via neural fields.基于神经场的医学图像配准。
Med Image Anal. 2024 Oct;97:103249. doi: 10.1016/j.media.2024.103249. Epub 2024 Jun 27.
5
Incremental Learning Meets Transfer Learning: Application to Multi-site Prostate MRI Segmentation.增量学习与迁移学习相结合:在多站点前列腺MRI分割中的应用
Distrib Collab Fed Learn Afford AI Healthc Resour Div Glob Health (2022). 2022 Sep;13573:3-16. doi: 10.1007/978-3-031-18523-6_1. Epub 2022 Oct 7.
8
ResViT: Residual Vision Transformers for Multimodal Medical Image Synthesis.ResViT:用于多模态医学图像合成的残差视觉转换器。
IEEE Trans Med Imaging. 2022 Oct;41(10):2598-2614. doi: 10.1109/TMI.2022.3167808. Epub 2022 Sep 30.
10
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers.基于零样本学习对抗 Transformer 的无监督 MRI 重建。
IEEE Trans Med Imaging. 2022 Jul;41(7):1747-1763. doi: 10.1109/TMI.2022.3147426. Epub 2022 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验