Suppr超能文献

基于随机专家的医学图像分割隐式解剖渲染

Implicit Anatomical Rendering for Medical Image Segmentation with Stochastic Experts.

作者信息

You Chenyu, Dai Weicheng, Min Yifei, Staib Lawrence, Duncan James S

机构信息

Department of Electrical Engineering, Yale University.

Department of Radiology and Biomedical Imaging, Yale University.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14222:561-571. doi: 10.1007/978-3-031-43898-1_54. Epub 2023 Oct 1.

Abstract

Integrating high-level semantically correlated contents and low-level anatomical features is of central importance in medical image segmentation. Towards this end, recent deep learning-based medical segmentation methods have shown great promise in better modeling such information. However, convolution operators for medical segmentation typically operate on regular grids, which inherently blur the high-frequency regions, ., boundary regions. In this work, we propose MORSE, a generic implicit neural rendering framework designed at an anatomical level to assist learning in medical image segmentation. Our method is motivated by the fact that implicit neural representation has been shown to be more effective in fitting complex signals and solving computer graphics problems than discrete grid-based representation. The core of our approach is to formulate medical image segmentation as a rendering problem in an end-to-end manner. Specifically, we continuously align the coarse segmentation prediction with the ambiguous coordinate-based point representations and aggregate these features to adaptively refine the boundary region. To parallelly optimize multi-scale pixel-level features, we leverage the idea from Mixture-of-Expert (MoE) to design and train our MORSE with a stochastic gating mechanism. Our experiments demonstrate that MORSE can work well with different medical segmentation backbones, consistently achieving competitive performance improvements in both 2D and 3D supervised medical segmentation methods. We also theoretically analyze the superiority of MORSE.

摘要

整合高级语义相关内容和低级解剖特征在医学图像分割中至关重要。为此,最近基于深度学习的医学分割方法在更好地对这类信息进行建模方面显示出了巨大的潜力。然而,用于医学分割的卷积算子通常在规则网格上运行,这会固有地模糊高频区域,即边界区域。在这项工作中,我们提出了MORSE,这是一个在解剖学层面设计的通用隐式神经渲染框架,用于辅助医学图像分割中的学习。我们的方法基于这样一个事实:与基于离散网格的表示相比,隐式神经表示在拟合复杂信号和解决计算机图形问题方面已被证明更有效。我们方法的核心是以端到端的方式将医学图像分割表述为一个渲染问题。具体来说,我们不断地将粗略的分割预测与基于模糊坐标的点表示对齐,并聚合这些特征以自适应地细化边界区域。为了并行优化多尺度像素级特征,我们借鉴专家混合(MoE)的思想,通过随机门控机制设计和训练我们的MORSE。我们的实验表明,MORSE可以与不同的医学分割主干很好地配合,在二维和三维监督医学分割方法中始终实现有竞争力的性能提升。我们还从理论上分析了MORSE的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验