Beal Maxwell R W, Osorio Jorge, Ciuoderis Karl, Hernandez-Ortiz Juan Pablo, Block Paul
Department of Civil and Environmental Engineering University of Wisconsin-Madison Madison WI USA.
Now at Ocean Ecology Laboratory NASA Goddard Space Flight Center/Science Systems and Applications, Inc Greenbelt MD USA.
Geohealth. 2025 Sep 1;9(9):e2024GH001325. doi: 10.1029/2024GH001325. eCollection 2025 Sep.
Dengue fever is a mosquito-borne viral disease rapidly creating a significant global public health burden, particularly in urban areas of tropical and sub-tropical countries. Hydroclimatic variables, particularly local temperature, precipitation, relative humidity, and large-scale climate teleconnections, can influence the prevalence of dengue by impacting vector population development, viral replication, and human-mosquito interactions. Leveraging predictions of these variables at lead times of weeks to months can facilitate early warning system preparatory actions such as allocating funding, acquisition and preparation of medical supplies, or implementation of vector control strategies. We develop hydroclimate-based statistical forecast models for dengue virus (DENV) at 1-, 3-, and 6- month lead times for four cities across Colombia (Cali, Cúcuta, Medellín, and Leticia) and compare with standard autoregressive models conditioned on dengue case counts. Our results indicate that (a) hydroclimate-based models are particularly skillful at 3- and 6- month lead times when autoregressive models often fail, (b) sea surface temperatures are the most skillful predictor at 3- and 6- month leads and (c) application of hydroclimate models are most beneficial when average DENV incidence is low, autoregressive relationships are weak, but outbreaks may still occur.
登革热是一种由蚊子传播的病毒性疾病,正在迅速造成重大的全球公共卫生负担,尤其是在热带和亚热带国家的城市地区。水文气候变量,特别是当地温度、降水、相对湿度以及大规模气候遥相关,可通过影响病媒种群发展、病毒复制以及人与蚊子的相互作用来影响登革热的流行程度。提前数周至数月利用这些变量的预测结果,有助于开展早期预警系统的准备行动,如分配资金、采购和准备医疗用品或实施病媒控制策略。我们针对哥伦比亚的四个城市(卡利、库库塔、麦德林和莱蒂西亚),开发了提前1个月、3个月和6个月的基于水文气候的登革热病毒(DENV)统计预测模型,并与以登革热病例数为条件的标准自回归模型进行比较。我们的结果表明:(a)当自回归模型常常失效时,基于水文气候的模型在提前3个月和6个月时表现出特别高的技能;(b)海表面温度在提前3个月和6个月时是最具技能的预测因子;(c)当登革热病毒平均发病率较低、自回归关系较弱但仍可能发生疫情时,应用水文气候模型最为有益。