Wülbern Janna, Carstensen Yvonne, Buchholz Florian, Schulenburg Hinrich, Johnke Julia
Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany.
Antibiotic Resistance Group, Max-Planck-Institute for Evolutionary Biology, Ploen, Germany.
Front Microbiol. 2025 Aug 19;16:1582371. doi: 10.3389/fmicb.2025.1582371. eCollection 2025.
Antimicrobial resistance (AMR) is a critical global health issue caused by antibiotic overuse, leading to the rise of multi-resistant pathogens such as in bacteria of the ESKAPE group. Alternative or combination therapies, including bacteriophages and plaque-forming predatory bacteria, are being explored in response. , a Gram-negative bacterial predator belonging to the and like organisms (BALOs), can kill other Gram-negative bacteria after the periplasmic invasion, including multidrug-resistant pathogens. However, a combined treatment of antibiotics and plaque-forming predatory bacteria requires the predatory bacteria to be resistant to the antibiotic. The predator's unique growth requirements limit standardized AMR testing methods.
We propose a streamlined three-step protocol to measure AMR in plaque-forming predatory bacteria. It requires the (i) cultivation of a dense culture with a suitable prey strain, followed by (ii) a double-layered agar plaque assay using a prey strain resistant to the antibiotic of interest, and (iii) the application of E-test strips for minimum inhibitory concentration (MIC) determination. We apply the method to the commonly used strain HD100. We use H03 as prey for MIC determination for five antibiotics.
Our results show consistent MICs for HD100 across independent experiments. Reliable MIC determination for meropenem was limited by H03 susceptibility to this antibiotic. Further, we observed a positive association between MIC values and predator inoculum concentration for ceftazidime, ciprofloxacin, and gentamicin. Prolonged incubation time increased MIC values, notably for ciprofloxacin. While resistant to piperacillin, predator plaques were absent on plates with piperacillin-tazobactam combinations.
The streamlined approach described here to determine MICs in plaque-forming predatory bacteria proves effective and robust, when using a suitable (i.e., resistant) prey. It provides a starting point for the joint study of antibiotics and plaque-forming predatory bacteria.
抗菌药物耐药性(AMR)是一个由抗生素过度使用导致的关键全球健康问题,致使多重耐药病原体如ESKAPE组细菌的出现。作为应对措施,包括噬菌体和噬菌斑形成性捕食细菌在内的替代疗法或联合疗法正在被探索。属于蛭弧菌类生物(BALOs)的革兰氏阴性细菌捕食者,在周质入侵后可杀死其他革兰氏阴性细菌,包括多重耐药病原体。然而,抗生素与噬菌斑形成性捕食细菌的联合治疗要求捕食细菌对抗生素具有抗性。捕食者独特的生长需求限制了标准化的AMR检测方法。
我们提出了一种简化的三步方案来测定噬菌斑形成性捕食细菌中的AMR。该方案要求(i)用合适的猎物菌株培养高密度的捕食细菌培养物,接着(ii)使用对目标抗生素具有抗性的猎物菌株进行双层琼脂噬菌斑测定,以及(iii)应用E-test试纸条测定最低抑菌浓度(MIC)。我们将该方法应用于常用菌株HD100。我们使用H03作为猎物来测定五种抗生素的MIC。
我们的结果表明独立实验中HD100的MIC一致。美罗培南可靠的MIC测定受到H03对该抗生素敏感性的限制。此外,我们观察到头孢他啶、环丙沙星和庆大霉素的MIC值与捕食者接种物浓度之间呈正相关。延长孵育时间会增加MIC值,环丙沙星尤为明显。虽然捕食细菌对哌拉西林耐药,但在含有哌拉西林-他唑巴坦组合的平板上没有捕食细菌噬菌斑。
当使用合适的(即抗性的)猎物时,这里描述的用于测定噬菌斑形成性捕食细菌中MIC的简化方法被证明是有效且稳健的。它为抗生素与噬菌斑形成性捕食细菌的联合研究提供了一个起点。