Cortese Rosa, Sforazzini Francesco, Gentile Giordano, de Mauro Anna, Luchetti Ludovico, Amato Maria Pia, Apóstolos-Pereira Samira Luisa, Arrambide Georgina, Bellenberg Barbara, Bianchi Alessia, Bisecco Alvino, Bodini Benedetta, Calabrese Massimiliano, Camera Valentina, Celius Elisabeth G, de Medeiros Rimkus Carolina, Duan Yunyun, Durand-Dubief Françoise, Filippi Massimo, Gallo Antonio, Gasperini Claudio, Granziera Cristina, Groppa Sergiu, Grothe Matthias, Gueye Mor, Inglese Matilde, Jacob Anu, Lapucci Caterina, Lazzarotto Andrea, Liu Yaou, Llufriu Sara, Lukas Carsten, Marignier Romain, Messina Silvia, Müller Jannis, Palace Jacqueline, Pastó Luisa, Paul Friedemann, Prados Ferran, Pröbstel Anne-Katrin, Rovira Àlex, Rocca Maria Assunta, Ruggieri Serena, Sastre-Garriga Jaume, Sato Douglas Kazutoshi, Schneider Ruth, Sepulveda Maria, Sowa Piotr, Stankoff Bruno, Tortorella Carla, Barkhof Frederik, Ciccarelli Olga, Battaglini Marco, De Stefano Nicola
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
Siena Imaging SRL, 53100 Siena, Italy.
Neurology. 2025 Sep 23;105(6):e214075. doi: 10.1212/WNL.0000000000214075. Epub 2025 Sep 4.
Multiple sclerosis (MS) is common in adults while myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is rare. Our previous machine-learning algorithm, using clinical variables, ≤6 brain lesions, and no Dawson fingers, achieved 79% accuracy, 78% sensitivity, and 80% specificity in distinguishing MOGAD from MS but lacked validation. The aim of this study was to (1) evaluate the clinical/MRI algorithm for distinguishing MS from MOGAD, (2) develop a deep learning (DL) model, (3) assess the benefit of combining both, and (4) identify key differentiators using probability attention maps (PAMs).
This multicenter, retrospective, cross-sectional MAGNIMS study included scans from 19 centers. Inclusion criteria were as follows: adults with non-acute MS and MOGAD, with high-quality T2-fluid-attenuated inversion recovery and T1-weighted scans. Brain scans were scored by 2 readers to assess the performance of the clinical/MRI algorithm on the validation data set. A DL-based classifier using a ResNet-10 convolutional neural network was developed and tested on an independent validation data set. PAMs were generated by averaging correctly classified attention maps from both groups, identifying key differentiating regions.
We included 406 MRI scans (218 with relapsing remitting MS [RRMS], mean age: 39 years ±11, 69% F; 188 with MOGAD, age: 41 years ±14, 61% F), split into 2 data sets: a training/testing set (n = 265: 150 with RRMS, age: 39 years ±10, 72% F; 115 with MOGAD, age: 42 years ±13, 61% F) and an independent validation set (n = 141: 68 with RRMS, age: 40 years ±14, 65% F; 73 with MOGAD, age: 40 years ±15, 63% F). The clinical/MRI algorithm predicted RRMS over MOGAD with 75% accuracy (95% CI 67-82), 96% sensitivity (95% CI 88-99), and specificity 56% (95% CI 44-68) in the validation cohort. The DL model achieved 77% accuracy (95% CI 64-89), 73% sensitivity (95% CI 57-89), and 83% specificity (95% CI 65-96) in the training/testing cohort, and 70% accuracy (95% CI 63-77), 67% sensitivity (95% CI 55-79), and 73% specificity (95% CI 61-83) in the validation cohort without retraining. When combined, the classifiers reached 86% accuracy (95% CI 81-92), 84% sensitivity (95% CI 75-92), and 89% specificity (95% CI 81-96). PAMs identified key region volumes: corpus callosum (1872 mm), left precentral gyrus (341 mm), right thalamus (193 mm), and right cingulate cortex (186 mm) for identifying RRMS and brainstem (629 mm), hippocampus (234 mm), and parahippocampal gyrus (147 mm) for identifying MOGAD.
Both classifiers effectively distinguished RRMS from MOGAD. The clinical/MRI model showed higher sensitivity while the DL model offered higher specificity, suggesting complementary roles. Their combination improved diagnostic accuracy, and PAMs revealed distinct damage patterns. Future prospective studies should validate these models in diverse, real-world settings.
This study provides Class III evidence that both a clinical/MRI algorithm and an MRI-based DL model accurately distinguish RRMS from MOGAD.
多发性硬化症(MS)在成年人中较为常见,而髓鞘少突胶质细胞糖蛋白抗体相关疾病(MOGAD)则较为罕见。我们之前的机器学习算法利用临床变量、≤6个脑病变以及无道森指,在区分MOGAD与MS方面的准确率达到79%,灵敏度为78%,特异性为80%,但缺乏验证。本研究的目的是:(1)评估用于区分MS与MOGAD的临床/MRI算法;(2)开发深度学习(DL)模型;(3)评估两者结合的益处;(4)使用概率注意力图(PAM)识别关键鉴别因素。
这项多中心、回顾性、横断面的MAGNIMS研究纳入了来自19个中心的扫描数据。纳入标准如下:患有非急性MS和MOGAD的成年人,具备高质量的T2液体衰减反转恢复序列和T1加权扫描。脑部扫描由2名阅片者评分,以评估临床/MRI算法在验证数据集上的表现。开发了一种基于ResNet-10卷积神经网络的DL分类器,并在独立验证数据集上进行测试。通过对两组正确分类的注意力图求平均生成PAM,识别关键差异区域。
我们纳入了406例MRI扫描(218例复发缓解型MS [RRMS],平均年龄:39岁±11,女性占69%;188例MOGAD,年龄:41岁±14,女性占61%),分为2个数据集:训练/测试集(n = 265:150例RRMS,年龄:39岁±10,女性占72%;115例MOGAD,年龄:42岁±13,女性占61%)和独立验证集(n = 141:68例RRMS,年龄:40岁±14,女性占65%;73例MOGAD,年龄:40岁±15,女性占63%)。临床/MRI算法在验证队列中预测RRMS优于MOGAD的准确率为75%(95% CI 67 - 82),灵敏度为96%(95% CI 88 - 99),特异性为56%(95% CI 44 - 68)。DL模型在训练/测试队列中的准确率为77%(95% CI 64 - 89),灵敏度为73%(95% CI 57 - 89),特异性为83%(95% CI 65 - 96),在未经重新训练的验证队列中的准确率为70%(95% CI 63 - 77)