Suppr超能文献

利用深度学习注意力图破译临床 MRI 上的多发性硬化症残疾

Deciphering multiple sclerosis disability with deep learning attention maps on clinical MRI.

机构信息

Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.

Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Spain, Universitat Autònoma de Barcelona, Barcelona, Spain.

出版信息

Neuroimage Clin. 2023;38:103376. doi: 10.1016/j.nicl.2023.103376. Epub 2023 Mar 15.

Abstract

The application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ≥3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.

摘要

卷积神经网络(CNNs)在 MRI 数据中的应用已经成为一种很有前途的方法,可以通过提取传统方法无法检测到的图像特征,实现对神经状况(包括多发性硬化症)病程的预测达到前所未有的准确性。此外,研究 CNN 导出的注意力图,即表明基于 CNN 的决策最相关的解剖特征的图,有可能揭示导致残疾积累的关键疾病机制。从前瞻性随访首次脱髓鞘发作后的患者队列中,我们选择了那些具有 T1 加权和 T2-FLAIR 脑 MRI 序列可供图像分析且在接下来的六个月内进行临床评估的患者(N=319)。根据扩展残疾状况量表(EDSS)评分将患者分为两组:≥3.0 和<3.0。使用全脑 MRI 扫描作为输入,3D-CNN 模型预测类别。使用体积测量作为解释变量的逻辑回归(LR)模型进行比较,并在具有相似特征的独立数据集(N=440)上验证 CNN 模型。使用层间相关性传播方法获得个体注意力图。CNN 模型的平均准确率为 79%,并且优于等效的 LR 模型(77%)。此外,该模型在无需重新训练的情况下成功验证了独立的外部队列(准确率=71%)。注意力图分析表明,额颞叶皮质和小脑对 CNN 决策起主要作用,这表明导致残疾增加的机制不仅仅是脑损伤或萎缩的存在,可能还涉及损伤在中枢神经系统中的分布方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba68/10034138/c1f77633117b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验