Suppr超能文献

光子学与微波技术融合,以提高计算灵活性。

Photonics and microwaves merge to improve computing flexibility.

作者信息

Wang Hongwei, Hu Guangwei

机构信息

School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore.

出版信息

Light Sci Appl. 2025 Sep 4;14(1):303. doi: 10.1038/s41377-025-01933-8.

Abstract

In artificial neural networks, data structures usually exist in the form of vectors, matrices, or higher-dimensional tensors. However, traditional electronic computing architectures are limited by the bottleneck of separation of storage and computing, making it difficult to efficiently handle large-scale tensor operations. The research team has developed a photonic tensor processing unit based on a single microring resonator, which performs tensor convolution operations in multiple dimensions of time, wavelength, and microwave frequency by precisely adjusting the operating state of multi-wavelength lasers. This innovative design increases the photonic computing density to 34.04 TOPS/mm², significantly surpassing the performance level of existing photonic computing chips.

摘要

在人工神经网络中,数据结构通常以向量、矩阵或更高维张量的形式存在。然而,传统的电子计算架构受限于存储与计算分离的瓶颈,难以高效处理大规模张量运算。该研究团队开发了一种基于单个微环谐振器的光子张量处理单元,通过精确调整多波长激光器的工作状态,在时间、波长和微波频率的多个维度上执行张量卷积运算。这种创新设计将光子计算密度提高到34.04 TOPS/mm²,显著超越了现有光子计算芯片的性能水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20bd/12411626/8dbdca4e7ba2/41377_2025_1933_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验