Suppr超能文献

RESP2:一种用于抗体发现的具有不确定性感知的多靶点多属性优化人工智能管道。

RESP2: An Uncertainty Aware Multi-Target Multi-Property Optimization AI Pipeline for Antibody Discovery.

作者信息

Parkinson Jonathan, Hard Ryan, Ko Young Su, Wang Wei

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0359, USA.

MAP Bioscience, La Jolla, CA, 92093, USA.

出版信息

Adv Sci (Weinh). 2025 Sep 4:e04350. doi: 10.1002/advs.202504350.

Abstract

Discovery of therapeutic antibodies against infectious disease pathogens presents distinct challenges. Ideal candidates must possess not only the properties required for any therapeutic antibody (e.g., specificity, low immunogenicity) but also high affinity to many mutants of the target antigen. Here, we present RESP2, an enhanced version of the Rapid Engineering System for Proteins (RESP) pipeline, designed for the discovery of antibodies against one or multiple antigens with simultaneously optimized developability properties. First, we evaluated this pipeline in silico using the Absolut! database of antibodies docked to a variety of target antigens. RESP2 consistently identifies sequences that bind more tightly to groups of target antigens than any sequence present in the training set, with success rates ≥ 85%. As a comparison, popular generative artificial intelligence (AI) techniques achieve success rates <= 1.5%. Next, we used the receptor binding domain (RBD) of the COVID-19 spike protein as a case study, and discovered a highly human antibody with mid to high-affinity binding to at least eight different variants of the RBD. These results illustrate the advantages of RESP2 pipeline for antibody discovery against evolving targets. A Python package that enables users to utilize the RESP pipeline on their own targets is available at https://github.com/Wang-lab-UCSD/RESP2.

摘要

发现针对传染病病原体的治疗性抗体面临着独特的挑战。理想的候选抗体不仅必须具备任何治疗性抗体所需的特性(例如特异性、低免疫原性),还必须对目标抗原的许多突变体具有高亲和力。在此,我们展示了RESP2,它是蛋白质快速工程系统(RESP)流程的增强版本,旨在发现针对一种或多种抗原的抗体,同时优化其可开发性。首先,我们使用与各种目标抗原对接的抗体的Absolut!数据库在计算机上评估了该流程。RESP2始终能识别出比训练集中任何序列都更紧密结合目标抗原组的序列,成功率≥85%。相比之下,流行的生成式人工智能(AI)技术的成功率<=1.5%。接下来,我们以新冠病毒刺突蛋白的受体结合域(RBD)为例进行研究,发现了一种与人高度同源的抗体,它对RBD的至少八种不同变体具有中到高亲和力的结合。这些结果说明了RESP2流程在发现针对不断演变的目标的抗体方面的优势。用户可在https://github.com/Wang-lab-UCSD/RESP2上获取一个Python包,该包能让用户在自己的目标上使用RESP流程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验