Suppr超能文献

RESP2:一种用于抗体发现的具有不确定性感知的多靶点多属性优化人工智能管道。

RESP2: An uncertainty aware multi-target multi-property optimization AI pipeline for antibody discovery.

作者信息

Parkinson Jonathan, Hard Ryan, Ko Young Su, Wang Wei

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0359.

MAP Bioscience, La Jolla, CA 92093.

出版信息

bioRxiv. 2025 Mar 9:2024.07.30.605700. doi: 10.1101/2024.07.30.605700.

Abstract

Discovery of therapeutic antibodies against infectious disease pathogens presents distinct challenges. Ideal candidates must possess not only the properties required for any therapeutic antibody (e.g. specificity, low immunogenicity) but also high affinity to many mutants of the target antigen. Here we present RESP2, an enhanced version of our RESP pipeline, designed for the discovery of antibodies against one or multiple antigens with simultaneously optimized developability properties. We first evaluate this pipeline using the Absolut! database of scores for antibodies docked to target antigens. We show that RESP2 consistently identifies sequences that bind more tightly to a group of target antigens than any sequence present in the training set with success rates >= 85%. Popular generative AI techniques evaluated on the same datasets achieve success rates of 1.5% or less by comparison. Next we use the receptor binding domain (RBD) of the COVID-19 spike protein as a case study, and discover a highly human antibody with broad (mid to high-affinity) binding to at least 8 different variants of the RBD. These results illustrate the advantages of this pipeline for antibody discovery against a challenging target. A Python package that enables users to utilize the RESP pipeline on their own targets is available at https://github.com/Wang-lab-UCSD/RESP2, together with code needed to reproduce the experiments in this paper.

摘要

发现针对传染病病原体的治疗性抗体面临着独特的挑战。理想的候选抗体不仅必须具备任何治疗性抗体所需的特性(例如特异性、低免疫原性),还必须对靶抗原的许多突变体具有高亲和力。在此,我们展示了RESP2,这是我们RESP流程的增强版本,旨在发现针对一种或多种抗原的抗体,同时优化其可开发性。我们首先使用Absolut!数据库中抗体与靶抗原对接的分数来评估这个流程。我们表明,RESP2能够持续识别出与一组靶抗原结合更紧密的序列,其成功率≥85%,高于训练集中的任何序列。相比之下,在相同数据集上评估的流行生成式人工智能技术的成功率为1.5%或更低。接下来,我们以新冠病毒刺突蛋白的受体结合域(RBD)为例进行研究,发现了一种高度人源化的抗体,它与RBD的至少8种不同变体具有广泛的(中到高亲和力)结合。这些结果说明了该流程在针对具有挑战性的靶标进行抗体发现方面的优势。一个使用户能够在自己的靶标上使用RESP流程的Python包可在https://github.com/Wang-lab-UCSD/RESP2上获取,同时还提供了重现本文实验所需的代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc5/11956582/a99cecf459db/nihpp-2024.07.30.605700v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验