Suppr超能文献

原发性中枢神经系统生殖细胞肿瘤患者总生存预测列线图的开发与验证

Development and validation of a nomogram for predicting overall survival in patients with primary central nervous system germ cell tumors.

作者信息

Yao Dunchen, Ye Baokui, Zhang Hongli, Pan Long, Yao Dongjie, Li Xu, Guo Chengcheng

机构信息

Department of Oncology, The Second People's Hospital of Guiyang, Guiyang, China.

Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Immunol. 2025 Aug 20;16:1630061. doi: 10.3389/fimmu.2025.1630061. eCollection 2025.

Abstract

BACKGROUND

Primary central nervous system (CNS) germ cell tumors (GCTs) are common neoplasms in the CNS of pediatric and adolescent patients. This study aimed to identify prognostic factors associated with CNS GCTs and establish an effective nomogram for predicting overall survival (OS) in patients with CNS GCTs.

METHODS

The development cohort including 1166 CNS GCTs patients was selected from Surveillance, Epidemiology, and End Results (SEER) program between 2000 and 2021. An additional 165 CNS GCTs patients treated at the Sun Yat-sen University Cancer Center (SYSUCC) between 1997 and 2019 were included as validation cohort.

RESULTS

The nomogram incorporated the variables screened by multivariate Cox regression analysis, which included age, sex, histopathology, dissemination, tumor size, radiotherapy, and chemotherapy. The model demonstrated good discriminative performance, with C-index of 0.773 (95% CI, 0.734 - 0.812) and 0.712 (95% CI, 0.599- 0.825) in the development and validation cohorts, respectively. Calibration curves and area under the time-dependent receiver operating characteristic curve (time-dependent AUC) verified the superiority of our nomogram for clinical usefulness. Decision curve analysis (DCA) further illustrated the potential clinical value of the nomogram for treatment decision-making. Additionally, we established a comprehensive risk grouping system that effectively categorized patients into distinct prognostic groups based on their predicted outcomes.

CONCLUSION

A precise prognostic nomogram was developed for patients with CNS GCTs, utilizing seven independent prognostic factors. It demonstrated satisfactory performance and clinical usability, aiding clinicians in accurately estimating prognosis and guiding the treatment and long-term management of patients with CNS GCTs.

摘要

背景

原发性中枢神经系统(CNS)生殖细胞肿瘤(GCTs)是儿童和青少年患者中枢神经系统中常见的肿瘤。本研究旨在确定与CNS GCTs相关的预后因素,并建立一种有效的列线图来预测CNS GCTs患者的总生存期(OS)。

方法

从2000年至2021年的监测、流行病学和最终结果(SEER)项目中选取了1166例CNS GCTs患者作为开发队列。另外,将1997年至2019年在中山大学肿瘤防治中心(SYSUCC)接受治疗的165例CNS GCTs患者纳入验证队列。

结果

该列线图纳入了多变量Cox回归分析筛选出的变量,包括年龄、性别、组织病理学、播散情况、肿瘤大小、放疗和化疗。该模型在开发队列和验证队列中分别表现出良好的判别性能,C指数分别为0.773(95%CI,0.734 - 0.812)和0.712(95%CI,0.599 - 0.825)。校准曲线和时间依赖性受试者工作特征曲线下面积(时间依赖性AUC)验证了我们列线图在临床实用性方面的优越性。决策曲线分析(DCA)进一步说明了列线图在治疗决策中的潜在临床价值。此外,我们建立了一个综合风险分组系统,根据患者的预测结果有效地将其分为不同的预后组。

结论

利用七个独立的预后因素为CNS GCTs患者开发了一个精确的预后列线图。它表现出令人满意的性能和临床实用性,有助于临床医生准确估计预后,并指导CNS GCTs患者的治疗和长期管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e35/12404971/95a74ceb1cbe/fimmu-16-1630061-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验