Suppr超能文献

神经基序的精确提取揭示了听觉皮层中的多尺度并行编码方案。

Precise Extraction of Neural Motifs Reveals Multiscale, Parallel Encoding Schemes in Auditory Cortex.

作者信息

Xiang Liang, Wang Mingxuan, Kanold Patrick O, Charles Adam

机构信息

Department of Biomedical Engineering, Johns Hopkins University.

Kavli Neuroscience Discovery Institute, Johns Hopkins University.

出版信息

bioRxiv. 2025 Aug 26:2025.08.26.672281. doi: 10.1101/2025.08.26.672281.

Abstract

Neural population activity is often stereotyped into recurring activity patterns, i.e., neural motifs, which can be seen as the fundamental building blocks in sensory processing and cognition. In this work we study the codes carried by such neural motifs in primary auditory cortex A1, and analyze how they build on and complement traditional views of single-unit coding. In particular, we study, using two-photon calcium imaging (CI), how activity in A1 differentially represents both sensory stimuli and task and behavioral variables in each of the parallel single neuron and population motif scales. While CI enables the study of neural motifs by capturing the activity of large neural populations, identifying motifs in CI is hampered by the temporal imprecision of current motif-detection algorithms when applied to CI data. We thus developed a new algorithm for motif detection, which enabled us to identify widespread stimulus-encoding motifs as well as a small number of motifs jointly encoding stimulus and choice in Layer 2/3 of A1. These motifs consist of small groups of neurons that are neither clustered nor regularly ordered in space. Interestingly, active neurons within task-encoding motifs exhibit mixed encoding properties inconsistent with the motifs they participate in. Together, these results demonstrate how single unit activity and neural motifs in A1 L2/3 provide different levels of coding granularity containing different information in parallel within the greater neural population. Generally, our results indicate that downstream populations, by selecting which scale of a population drives them, can be selective in the information collected for later cognitive processing.

摘要

神经群体活动通常被定型为反复出现的活动模式,即神经基序,它可被视为感觉处理和认知中的基本构建单元。在这项工作中,我们研究了初级听觉皮层A1中此类神经基序所携带的编码,并分析它们如何建立在单单元编码的传统观点之上并对其进行补充。具体而言,我们使用双光子钙成像(CI)研究了A1中的活动如何在平行的单神经元和群体基序尺度上分别差异地表示感觉刺激、任务和行为变量。虽然CI通过捕获大型神经群体的活动实现了对神经基序的研究,但当将当前的基序检测算法应用于CI数据时,由于时间精度问题,在CI中识别基序受到阻碍。因此,我们开发了一种新的基序检测算法,这使我们能够在A1的第2/3层中识别出广泛的刺激编码基序以及少量联合编码刺激和选择的基序。这些基序由一小群在空间上既不聚集也不规则排列的神经元组成。有趣的是,任务编码基序内的活跃神经元表现出与它们所参与的基序不一致的混合编码特性。总之,这些结果表明A1第2/3层中的单单元活动和神经基序如何在更大的神经群体中并行提供包含不同信息的不同编码粒度水平。一般来说,我们的结果表明,下游群体通过选择驱动它们的群体尺度,可以在为后续认知处理收集的信息方面具有选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13f0/12407935/7a6037256241/nihpp-2025.08.26.672281v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验