亲和力成熟和轻链介导的互补决定区多样化可预测病毒进化。
Affinity Maturation and Light-Chain-Mediated Paratope Diversification Anticipate Viral Evolution.
作者信息
Dingus John, Yoo Duck-Kyun, Kumar Sachin, Wang Yajuan, Kibria Md Golam, Saghei Shahab, Allahyari Zahra, Chen Jessica W, Caputo Natalie M, Hwang Jason, Chen Bing, Wesemann Duane R
机构信息
Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA, Broad Institute of MIT, and Harvard, Cambridge, MA 02139, USA, Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
Division of Molecular Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
出版信息
bioRxiv. 2025 Aug 28:2025.08.27.672735. doi: 10.1101/2025.08.27.672735.
A key goal of vaccinology is to train the immune system to combat current pathogens while simultaneously preparing it for future evolved variants. Understanding factors contributing to anticipatory breadth, wherein affinity maturation against an ancestral strain yields neutralization capacity against evolved variants, is therefore of great importance. Here, we investigated the mechanism of anticipatory breadth development in a public antibody family targeting the functionally restricted ACE2 binding site on SARS-CoV-2. IGHV3-53/66 antibodies isolated from memory B cells of infection-naïve individuals vaccinated with the ancestral Wuhan-strain mRNA vaccine frequently neutralized evolved Omicron variants and contained several hallmark mutations previously shown to enhance neutralization breadth. Comparative analyses with antibodies from Omicron breakthrough infections revealed that breadth-associated patterns of somatic hypermutation emerged independently of variant exposure. However, Omicron infection had a marked impact on light chain pairing frequencies, suggestive of variant-imposed selection of favorable light chains. Analysis of available IGHV3-53/66 antibody structures complexed with SARS-CoV-2 receptor binding domain (RBD) clarified these findings; convergent somatic mutations on the heavy chain largely refined contacts with invariant RBD residues, while light chain pairings shifted epitopes to avoid steric challenges posed by Omicron mutations. These findings support a model of anticipatory breadth with three key elements: (1) targeting of a functionally restricted epitope, (2) affinity maturation to establish an affinity buffer, and (3) variable chain pairing to generate paratope diversity. These elements each serve to compensate for a distinct consequence of viral mutagenesis, offering a mechanistic framework for anticipating viral evolution.
疫苗学的一个关键目标是训练免疫系统对抗当前病原体,同时使其为未来进化的变体做好准备。因此,了解促成预期广度的因素非常重要,其中针对原始毒株的亲和力成熟会产生针对进化变体的中和能力。在这里,我们研究了针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)功能受限的血管紧张素转换酶2(ACE2)结合位点的一个公共抗体家族中预期广度发展的机制。从接种原始武汉株mRNA疫苗的未感染个体的记忆B细胞中分离出的IGHV3-53/66抗体经常中和进化后的奥密克戎变体,并包含几个先前已证明可增强中和广度的标志性突变。与奥密克戎突破性感染产生的抗体进行比较分析表明,体细胞超突变的广度相关模式独立于变体暴露而出现。然而,奥密克戎感染对轻链配对频率有显著影响,这表明变体对有利轻链进行了选择。对与SARS-CoV-2受体结合域(RBD)复合的可用IGHV3-53/66抗体结构的分析阐明了这些发现;重链上的趋同体细胞突变在很大程度上优化了与不变RBD残基的接触,而轻链配对改变了表位,以避免奥密克戎突变带来的空间位阻挑战。这些发现支持了一个具有三个关键要素的预期广度模型:(1)针对功能受限的表位;(2)亲和力成熟以建立亲和力缓冲;(3)可变链配对以产生互补决定区多样性。这些要素各自用于补偿病毒诱变的不同后果,为预测病毒进化提供了一个机制框架。